—t

a\)u .

- xo.m !_

. AGENCY USE ONLY {Laave Biank)

Py

AD-A239
llllllllllllllllllilllllllllllllhllllhl!II'

J

(

- 5
5 ITATION PAGE

Form Approved T
OPM No. 0704-0188

10Uf POr re6pONSA, Ncluding the time for reviewing instructions, searching existing data sources gathering and mamtaining the data
$ burden estimate or any other aspect of this collection of information, inciuding suggestions for reducing this burden, 1o Washington
letierson Davis Highway, Sulte 1204, Arfington, VA 22202-4302, and to the Office of Information and Regulatory Affars, Oftics of

| 2. HerORT DATE

4. TITLE AND SUBTITLE

Ada Compiler Validation Summary Report:UNISYS Corporation, UCS Ada, Version
1R1, 2200/600 (Host & Target), 910510S1.11161

6. AUTHOR(S)

Gaithersburg, MD
USA

Bldg. 255, Rm A266
Gaithershurg, MD 20899

Ada Joint Program Office

Pentagon, RM 3E114
Washington, D.C. 20301-3081

9/SWSORIMONITORING AGENEYNAM E(S) AND ADDRESS(ES)

National Institute of Standards and Technology

. PERFORMI GANIZATION NAME(S) AND ADDRESS(ES)

Naticnal Institute of Standards and Technology
National Computer Systems Laboratory

USA

3. REPORT TYPE AND DATES COVERED
Final: 10 May 1991 to 01 Jun 1993

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

NISTSOUNIS15_1_1.11

\\

United States Department of Defense

N VT Y T YTyt T T
10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

\ 11, SUPPLEMENTARY NOTES

S~

ot e, g h o e O

[[7Za. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

-

12b. DISTRIBUTION CODE ‘

Target), ACVC 1.11.

13. ABSTRACT (Maximum 200 words)
UNISYS Corporation, UCS Ada, Verision 1R1, Gaithersburg, MD, 2200/600 running 0S1100, Verison 43R2 (Host &

DTIC

R ELECTE ¥
AUGZ6 1991%

P B T AT N rmeven o Sy s

91-08
i

e smmme——
14. SUBJECT TERMS

Ada programming language, Ada Compiler Val. Summary Repont, Ada Compiler Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO.

[77. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
UNCLASSIFED

OF ABSTRACT
UNCLASSIFIED

19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

NSN 7540-01-280-55)

-~

£,

-
s 2 Sy Oy £)
E o oy nn A

Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Std. 239-128

Py

AVF Control Number: NIST90UNIS15 1 1.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on 10 May 1991.

Compiler Name and Version: UCS Ada, Version 1Rl
Host Computer System: 2200/600 running 0S1100, Version 43R2
Target Computer System: 2200/600 running 051100, Version 43R2

A more detailed description of this Ada implementation is found in
section 3.1 of this report.

As a result of this validation effort, Validation Certificate
910510S1.11161 is awarded to UNISYS Corporation. This certificate
expires on 01 March 1993.

This report has been reviewed and is approved.

/ .
///cm
Ada VaildatlzD/Fac1llty
Mr. L. Arnold Johnson
Manager, Software Standards
Englneerlng Division (ISED) Validation Group
Computer Systems Laboratory (CLS)
National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, MD 20899

. L P2e.

on Organization ~ Ada Joint Program Office

Directo mputer & Software Dr. John Solomond
Engineerlng Division Director

Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

Accession PFor

NTIS GRA&I Cdl
DTIC TAB a
Unannounced 0

Justificatione e

By

Distribution/

Avallability Codes
jAvail and/or
Dist Special

Y

P

4

AVF Control Number: NISTSOUNIS515_ 1 1.11

DATE COMPLETED
BEFORE ON-SITE: April 09, 1991
AFTER ON-SITE: May 10, 1991
REVISIONS: July 24, 1991

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 910510S1.11161
UNISYS Corporation
UCS Ada, Version 1Rl
2200/600 => 2200/600

. Prepared By:

Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

AVF Control Number: NIST9OUNIS515_ 1 1.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on 10 May 1991.

Compiler Name and Version: UCS Ada, Version 1Rl
Host Computer System: 2200/600 running 051100, Version 43R2
Target Computer System: 2200/600 running 0S1100, Version 43R2

A more detailed description of this Ada implementation is found in
section 3.1 of this report.

As a result of this validation effort, Validation Certificate
91051081.11161 is awarded to UNISYS Corporation. This certificate
expires on 01 March 1993.

This report has been reviewed and is approved.

7/ o
A /1¢<;wékz//'/¢4”¢

Ada Validatiow Facility
Mr. L. Arnold’Johnson
Manager, Software Standards
Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CLS)
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899

idatign Organization Ada Joint Program Office

Directory Computer & Software Dr. John Solomond
Engineering Division Director
Institute for Defense Analyses Department of Defense

Alexandria VA 22311 Washington DC 20301

j i

5%

DECLARATION OF CONFORMANCE
The following declaration of conformance was supplied by the
customer.
Customer: UNISYS Corporation
Certificate Awardee: UNISYS Corporation
Ada Validation Facility: National Institute of Standards and
Technology
Computer Systems Laboratory (CSL)
Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: UCS Ada, Version 1Rl

Host Computer System: 2200/600 running O0S1100, Version
43R2
Target Computer System: 2200/600 xunning 0S1100, Version
43R2
Declaration:

I th- dersigned, declare that I have no knowledge of deliberate
devi. ._uns from the Ada Language Standard ANSI/MIL-STD-1815A ISO
8652~1987 in the implementation listed above.

d/Asinn

Chstomer Signature ’ Da¥e
J. S. Brown
Company: UNISYS Corporation

Title: Language Products Department Manager
77 —
Certificate Awardee Signature Date

J. S. Brown
Company: UNISYS Corporation
Title: Language Products Department Manager

ae

” “s

TABLE OF CONTENTS

CHAPTER 1 .) . o L] .
I NTRODUCT I ON . L]

USE OF THIS VALIDATION SUMMARY

1.1
1.2 REFERENCES
1.3 ACVC TEST CLASSES . . .
1.4 DEFINITION OF TERMS . .
CHAPTER 2 ¢« o ¢ o o ¢ o o s o o o
IMPLEMENTATION DEPENDENCIE .
2.1 WITHDRAWN TESTS . .
2.2 INAPPLICABLE TESTS .
2.3 TEST MODIFICATIONS .

e o o o o
¢ e o o o

CHAPTER 3 « 4 ¢ ¢ o o ¢ o ¢ o o o s o o
PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT . .

3.2 SUMMARY OF TEST RESULTS

3.3 TEST EXECUTION

APPENDIX A L d . L3 L] . L4 L . . L]
MACRO PARAMETERS . ¢« . ¢« « « « .

APPENDIX B * L] . . . L * . . L d L] L] L] L]
COMPILATION SYSTEM OITIONS
LINKER OPTIONS . . « ¢« ¢ & ¢ o &+ &

APPENDIX C . . « « « «
APPENDIX F OF THE Ada

STANDARD . .

o e o o &

e ® o o e

¢ o o o o * e o o o o

¢ e o o o e o ¢ o 2 o

* o e o o

e o o o o

HPJPJT'HOJ
W

[\SIN N SRS 38 V)
1 |
F e

WWwwww
[
N =

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro90] against the Ada Standard ([Adag3)
using the current Ada Compiler Validation Capakility (ACVC). This
validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User's Guide ([UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions idertified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and <complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

1-1

‘A

av

(Pro90) Ada Compiler Validation Procedires, Version 2.1, Ada Joint
Program Office, August 1990.

[(UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are exacutable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self~checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK_FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued. Class B
tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that
all violations of the Ada Standard are detected. Some of tie class
B tests contain legal Ada code which must not be flagged illegal
by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are ex, >cted at link time, and execution
is attenpted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced

1-2

2

by .the AVF.
modifications

This customization consists of making the
described in the preceding paragraph, removing

withdrawn tests (see section 2.1) and, possibly some inapplicable
tests (see Section 3.2 and [UG89}).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ada
Validation
Facility (AVF)

Ada
Validation
Organization
(AVO)

Compliance of
an Ada
Implementation

Computer
Systen

The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and exezution thereof.

The means for testing compliance of Ada
implementations, Validation consisting of the
test suite, the support programs, the ACVC
Capability user's guide and the template for
the validation summary (ACVC) report.

An Ada compiler with its host computer system and
its target computer system.

The part of the certification body which carries
out the procedures required to establish the
compliance of an Ada implementation.

The part of the certificacion body that provides
technical guidance for operations of the Ada
certification system.

The ability of the implementation to pass an ACVC
version.

A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user~written or user-designated programs; performs
user-designated data manipulation, including
arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

1-3

Conformity Fulfiliment by a product, process or service of
all requirements specified.

Customer An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

Declaration of A formal statement from a customer assuring that

Conformance conformity is realized or attainable on the Ada
implementation for which validation status is
realized.

Host Computer A computer system where Ada source programs are

: System transformed into executable form.
Inapplicable A test that contains one or more test objectives
test found to be irrelevant for the given Ada
implementation.
Operating Software that controls the execution of programs
Systenm and that provides services such as resource

allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada
Computer programs are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated
Implementation successfully either by AVF testing or by
registration {Pro90].

Validation The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

Withdrawn A test found to be incorrect and not used in

test conformity testing. A test may be incorrect
because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

R
v

T e

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 93 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-03-14.

E28005C B28006C C34006D C355081 C35508J C35508M
C35508N C35702A C35702B B41308B C43004A C45114A
C45346A C45612A C45612B C45612C C45651A C46022A
B49008A A74006A C74308A B83022B B83022H B83025B
B83025D B83026B C83026A C83041A B85001L C86001F
C94021A C97116A C98003B BA2011A CB7001A CB7001B
CB7004A CCl223A BC1226A CCl226B BC3009B BD1BO2B
BD1BO6A AD1BO8A BD2A02A CD2A21E CD2A23E CD2A32A
CD2A41A CD2A41E CD2A87A CD2B15C BD3006A BD4008A
CD4022A CD4022D CD4024B CD4024C CD4024D CD4031A
CD4051D CD5111A CD7004C ED7005D CD7005E AD7006A
CD7006E AD7201A AD7201E CD7204B AD7206A BD8002A
BD8004C CD9005A CD9005B CDA201E CE21071 CE2117A
CE2117B CE2119B CE2205B CE2405A CE3111C CE3116A
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the
format AI-dddd. For this implementation, the following tests were
inapplicable for the reasons indicated; references to Ada Issues
are included as appropriate.

The following 173 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113N..Y (12 tests)
C35706N..Y (12 tests)
C35708N..Y (12 tests)

C35705N..Y (12 tests)
C35707N..Y (12 tests)
C35802N..Z (13 tests)

2-1

C45241N..Y (12 tests) C45321N..Y (12 tests)

C45421N..Y (12 tests) C45521N..Z2 (13 tests)
C45524N..Z2 (13 tests) C45621N..Z (13 tests)
C45641N..Y (12 tests) C46012N..2 (13 tests)

C24113I..M (5 TESTS) contain 1lines that exceed this
implementation's maximum input-line length of 132 characters.

The following 21 tests check for the predefined type
SHORT INTEGER; for this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C454128B C45502B C45503B C45504B CA5504E
C45611B C45613B C456148B C45631B C45632B
B52004E C55B07B B55B0SD B86001V C86006D
CD7101E

The following 20 tests check for the predefined type
LONG_INTEGER; for this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B0O7A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONG_INTEGER, or SHORT INTEGER: for this implementation, there
is no such type.

C35713B, C45423B, B86001T, and C86006H check for the
predefined type SHORT FILOAT; for this implementation, there
is no such type.

€35713D and B86001Z check for a predefined floating-point type
with a name other than FLOAT, LONG_FLOAT, or SHORT_FLOAT; for
this implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point
operations for types that require a SYSTEM.MAX MANTISSA of 47
or greater; for this implementation, there is “no such type.

C45536A, C46013B, C46031B, C46033B, and C46034B contain length
clauses that specify values for small that are not powers of
two or ten; this implementation does not support such values
for small.

C45624A..B (2 tests) check that the proper exception is raised
if MACHINE_OVERFLOWS is FALSE for floatlng point types; for
this 1mplementatlon, MACHINE OVERFLOWS is TRUE.

2=-2

B86001Y uses the name of a predefined fixed-point type other
than type DURATION; for this implementation, there is no such

type.

CD1009C checks whether a 1length clause can specify a
non-default size for a floating-point type: this
implementation does not support such sizes.

CD2A84A, CD2A8S4E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non~default sizes for access types: this
implementation does not support such sizes.

BD3001A, BD8003A, BD8004A..B (2 tests),
machine code insertions;
package MACHINE_CODE.

and AD8011A use
this implementation provides no

CD2AS53A uses a value other than a power of two for 'SMALL.
(See section 2.3.)

The 21 tests listed in the following table are not applicable
because the given file operations are supported for the given
combination of mode and file access method.

Test File Operation Mode File Access Method
CE2102D CREATE IN FILE SEQUENTIAL IO
CE2102E CREATE OUT_FILE SEQUENTIAL IO
CE2102F CREATE INOUT_FILE DIRECT IO
CE21021I CREATE IN_FILE DIRECT_IO
CE2102J CREATE OUT_FILE DIRECT_ IO
CE2102N OPEN IN FILE SEQUENTIAL IO
CE21020 RESET IN_FILE SEQUENTIAL IO
CE2102P OPEN OUT_FILE SEQUENTIAL IO
CE2102Q RESET OUT_FILE SEQUENTIAL IO
CE2102R OPEN INOUT_FILE DIRECT IO
CE2102S. RESET INOUT _FILE DIRECT_IO
CE2102T OPEN IN_FILE DIRECT_IO
CE2102U RESET IN FILE DIRECT_IO
CE2102V OPEN OUT_FILE DIRECT_IO
CE2102W RESET OUT_FILE DIRECT_IO
CE3102E CREATE IN_FILE TEXT_IO
CE3102F RESET Any Mode TEXT_IO
CE3102G DELETE = ==wwec-- TEXT_IO
CE3102I CREATE OUT_FILE TEXT_I0
CE3102J0 OPEN IN_FILE TEXT_IO
CE3102K OPEN OUT_FILE TEXT_I0

The following 16 tests check operations on sequential, direct,
and text files when multiple internal files are associated
with the same external file and one or more are open for
writing; USE_ERROR is raised when this association is

2=-3

. attempted.

CE2107B..E 'CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

CE2203A checks that WRITE raises USE_ERROR if the capacity of
an external sequential file is exceeded; this implementation
cannot restrict file capacity.

CE3304A checks that SET_LINE_LENGTH and SET_ PAGE_LENGTH raise
USE_ERROR if they specify ‘an inappropriate value for the
external file; there are no inappropriate values for this
implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value
of the page number exceeds COUNT'LAST. For this
implementation, the value of COUNT'LAST is greater than 150000
making the checking of this objective impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 18 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard
in the way expected by the original tests.,

B23004A B24007A B24009A B28003A B32202A B32202B
B32202C B37004A B45102A B61012A B91004A B95069A
B95069B B97103E BA1101B4 BC2001D BC3009C

CD2A53A was graded inapplicable by Evaluation Modification as
directed by the AVO. The test contains a specification of a
power-of-10 value as small for a fixed-point type. The AVO ruled
that, under ACVC 1.11, support of decimal smalls may be omitted.

e

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial
pages of this report.

For a point of contact for technical information about this
Ada implementation system, see:

J. S. Brown

P.O.Box 64942

St. Paul Mn. 55164
Phone: (612) 635-2077

For a point of contact for sales information about this Ada
implementation system, see:

M. C. Adelman

8008 Westpark Dr.
McLean Va. 22102
Phone: (703) 556-5029

Testing of this Ada implementation was conducted at the
customer's site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro90].

For all processed tests (inapplicable and applicable), a result
was obtained that conforms to the Ada Programming Language

Standard.
a) Total Number of Applicable Tests 3779
b) Total Number of Withdrawn Tests 93
c) Processed Inapplicable Tests 298
d) Non-Processed I/O Tests 0

e) Non-Processed Floating-Point

3-1

av

Precision Tests 0

f) Total Number of Inapplicable Tests 298 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

When this implementation was tested, the tests listed in section
2.1 had been withdrawn because of test errors.

3.3

TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this
compiler was tested, the tests listed in section 2.1 had been
withdrawn because of test errors. The AVF determined that 298
tests were inapplicable to this implementation. all
inapplicable tests were processed during validation testing.
In addition, the modified tests mentioned in section 2.3 were
also processed.

A magnetic tape containing the customized test suite (see
section 1.3) was taken on-site by the validation team for
processing. The contents of the magnetic tape were loaded
directly onto the host / target computer.

After the test files were loaded onto the host / target
computer, the full set of tests was processed by the Ada
implementaticn.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix
B for a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this
test were:

The options invoked by default for validation testing during
this test were:

A. compiler default options invoked were:

NO-ALLOC, CACHE/DO, NO-CLEAR, CODE, SINGLESPACE,
DYNAMIC/32768, EXTENDED, NO-GEN-INST, NO-LEVEL,
LIBUPDATE, NO-LINKINFO, MAXERRORS/100, NO~OBJECT,
NO-OBJ~PKT, NO-OPTIM, OPTIONS, NO-REMARK,

RUNCHECK, NO-SOURCE, STACK/64, NO-~TRANSFORM, WARNING,
WIDE, NO-XREF-SAVE

B. specific options invoked for all tests were:

ADA-BUFFERS/1000, NO-OPTIONS, NO-DEBUG, TASKING, EXPAND,
NO-GEN-INL

3-2

Tordo gt 4

ghreas vy

C. other options invoked were as follows:

SOURCE -~ for tests requiring source list output (ie:
B-tests, E-tests, and N/A tests that terminated in
compile).

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The
listings examined on-site by the validation team were also

archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for
customizing the ACVC. The meaning and purpose of these
parameters are explained in [UG89]. The parameter values are
presented in two tables. The first table lists the values
that are defined in terms of the maximum input-line length,
which is 1 the value for $MAX IN LEN--also listed here.
These values are expressed here as Ada string aggregates,
where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX IN_LEN 132

$BIG_ID1 (1..V=1 => ‘A', V => '1!')

$BIG_ID2 (1..V=1 => 'A', V => 121)

$BIG_ID3 (1..V/2 => 'A') & '3' & (1..V-1-V/2 => 'A!)
$BIG_ID4 (1..V/2 => 'A') & '4' & (1..V=-1-V/2 => 'A')
$BIG_INT_ LIT (1..V=3 => '0') & "298"

$BIG_REAL LIT (1..V-5 => '0') & "690.0"

$BIG_STRING1 & (1..V/2 => 'A') & '

$BIG_STRING2 et & (1..V-1-V/2 => A') & "1t & '™
$BLANKS (1..V=20 => ' ')

$MAX_LEN INT BASED_LITERAL
2T & (1..V-5 => '0') & "11:"

$MAX_LEN REAL BASED LITERAL
"16T" & (1..V-7 => '0') & "F.E:"

$MAX_STRING_LITERAL '"' & (1..V-2 => 'A') & '™

N G o s

L)

¥

' The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value

D . D D D S T WD D D D > D s > > T P D T DT T D s > B Ve VD T D v - —

$ACC_SIZE 36
$ALIGNMENT 1
$COUNT_LAST 262_143
$DEFAULT MEM SIZE 16777216
$DEFAULT STOR UNIT 36
$DEFAULT SYS_NAME ucs
$DELTA_DOC 24#1.0#4e-35
$ENTRY ADDRESS 0

$SENTRY ADDRESS1 1
$ENTRY_ ADDRESS2 2
$FIELD_LAST 132

$FILE_TERMINATOR
$FIXED_NAME NO_SUCH_FIXED_TYPE
$FLOAT_NAME NO_SUCH_TYPE
$FORM_STRING "

$FORM_STRING2 "MAX_REC_NUM=>8"

$GREATER_THAN_DURATION 100_000.0
$GREATER_THAN_DURATION BASE_ LAST 131 073.0
$GREATER_THAN FLOAT BASE_LAST 1.70E+38
$GREATER_THAN FLOAT SAFE_LARGFE. 1.0E308
$GREATER_THAN_SHORT FLOAT SAFE LARGE 1.0E308

$HIGH_PRIORITY 1

$ILLEGAL_ EXTERNAL_ FILE NAME1l

$ILLEGAL_ EXTERNAL FILE NAME2

$INAPPROPRIATE LINE_LENGTH

$INAPPROPRIATE PAGE_LENGTH

S$INCLUDE_PRAGMAl

$INCLUDE_PRAGMA2

ADA*ABCDEFGHIJKLM.
ADA*BDB*CDC.

-1

-1

PRAGMA INCLUDE ("A28006D1.TST")

PRAGMA INCLUDE ("B28006E1l.TST")

$INTEGER_FIRST -34359738367
$INTEGER_LAST 34359738367
$INTEGER LAST PLUS 1 34359738368
$INTERFACE_LANGUAGE UFTN
$LESS_THAN_DURATION -100_000.0
$LESS_THAN DURATION BASE_FIRST -131_073.0
$LINE_TERMINATOR ASCII.LF
$LOW_PRIORITY 1
$MACHINE_CODE_STATEMENT NULL;

$MACHINE_CODE_TYPE
$MANTISSA_DOC
$MAX_DIGITS
$MAX_INT

$MAX_INT PLUS_1
$MIN_INT

$NAME

$NAME_LIST
$NAME_SPECIFICATION1
$NAME_SPECIFICATION2

$NAME_SPECIFICATION3

NO_SUCH_TYPE

35

17

34359738367
34359738368
~34359738367
NO_SUCH_TYPE_AVAILABLE
ucs

RITE#*X2120A
RITE*X2120B

RITE*X3119A

sz

$ﬁ§G_BASED_InT
$NEW_MEM_SIZE
$NEW_STOR_UNIT
$NEW_SYS_NAME
$PAGE_TERMINATOR
$RECORD DEFINITION
$RECORD_NAME
$TASK_SIZE
$TASK_STORAGE_SIZE
$TICK
$VARIABLE_ADDRESS
$VARIABLE_ADDRESS1
$VARIABLE_ADDRESS2

$YOUR_PRAGMA

8#700000000001#

0

36

ucs

ASCII.FF

NEW INTEGER;
NO_SUCH_MACHINE_CODE_TYPE
36

178

0.0002
GET_VARIABLE_ADDRESS
GET_VARIABLE_ADDRESS1
GET_VARIABLE_ADDRESS2

INTERFACE_NAME

APPENDIX B
COMPILATION SYSTEM OPTIONS
B.1 COMPILER OPTIONS:
The compiler options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not this report.

Compiler Call Letter Options:

D Prints the allocation 1listing; a listing of all program
symbols for which storage is allocated.

E Prints warning and remark messaazs.

I Specifies that source input is from the runstrean.

L Invokes all of the listing options (same as keyword options
ALLOC, LINKINFO, OBJECT, OBJ-PKT, OPTIONS, REMARK, SOURCE).

N Specifies that no 1listing options are to take affect
(opposite of the L option).

o] prints the object code listing.

S Prints a listing of the source code.

Compiler Keyword Options:
ADA-BUFFERS/n

Controls the amount of storage used by the virtual memory of the
compiler. You should only use this parameter when advised to do
so by a Unisys support representative.

ALLOC/NO-ALLOC
Produces a 1listing of all symbols for which storage was
allocated.

CACHE/spec
Used to improve wall time compilation performance by using the
available real memory on the system to reduce the number of I/0
requests.

CLEAR/NO-CLEAR
Controls whether or not uninitialized static variables are set

B~1

H
5
:"

‘A
”

to zero.

CODE/NO-CODE
Controls production of object code.

DEBUG/spec
Controls the generation of PADS (Programmer's Advanced Debugging
System) interface code.

DOUBLESPACE/SINGLESPACE
Defines the line spacing for the source program listing.

DYNAMIC/n
Controls the size of objects allocated in the dynamic stack
(range is 0 to 32,768).

EXPAND/NO-EXPAND
Controls whether or not to insert code for subprograms that
include the pragma INLINE and are not directly recursive.

EXTENDED/n
Defines the machine class on which the object module produced by
the compiler executes n = blank - defaults to LSS definition:

0 - any extended mode machine
2 - 1100/90 and 2200/600 system
4 - 2200/200, 2200/300, and 2200/400 system

GEN-INL/NO-GEN-INL
Controls whether the compiler will place the code of a generic
instantiation within the compilation unit (inline) or in a
separate subunit.

GEN-INST/NO-GEN-INST
Controls whether or not the compile will instantiate a pending
uncompiled generic body whose template has been compiled or
recompiled in another library.

LEVEL/STANDARD - NO-LEVEL
Controls whether or not to issue warning messages for nonstandard
pragmas and attributes.

LIBUPDATE/NO-LIBUPDATE
Controls whether or not the compiler will produce an object
module and update the program library.

LINKINFO/NO-LINKINFO
Controls the listing of external definitions, external references
and logical bank sizes.

ae 'y

MAXERRORS/n’
Specifies that the compiler terminate immediately if more that
n major errors occur.

'NARROW/WIDE

. Controls the width of the printed listings (79 and 132 character
lines respectively).

OBJECT/OBJECT~ONLY/NO~OBJECT

OBJECT - produces an object 1listing with interspersed
source lines.

OBJECT-ONLY - produces an object listing with no interspersed
source lines.

NO-OBJECT - suppresses the object listing.

OBJ-PKT/NO-OBJ-PKT
Controls whether object code is additionally listed for 1I/0
packets, parameter packets, and array descriptors.

OPTIM/NO-OPTIM

Controls whether or to increase the optimization performed by
LsS.

OPTIONS/NO-~OPTIONS
Controls whether or not options settings are listed.
REMARK/NO-REMARK
Controls whether or not REMARK class messages are listed during
compile.

RUNCHECK/NO-RUNCHECK
Controls whether or not to generate extra code to perform range
checks on array element references and substring expressions and
terminate execution if error encountered.

SOURCE/NO~SOURCE
Controls whether or not a source listing is produced.

STACK/n
Specifies the maximum size of fixed, non-static objects that the
compiler allocates in the UCS Ada fixed stack.

TASKING/NO~TASKING
Tells the compiler whether or not a library unit and its subunits
use tasking declarations.

TRANSFORM/NO-TRANSFORM
Controls whether or not the compiler ©performs some
transformations that cause improvements at execution-time but
also can cause precision differences.

B-3

are

WARNING/NO-WARNING
Controls whether or not to list warning class messages of
subclass USAGE or ARCHAIC-USAGE.

XREF-SAVE/NO-XREF~SAVE
Controls whether or not the compiler will store an intermediate
version of the unit in the program library for use with the cross
reference tool which produces a cross reference listing.

B.2 BINDER/LINKER OPTIONS:

The Binder/Linker options of this Ada implementation, as
described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this appendix are to
Binder/Linker documentation and not this report.

Binder Call Letter Options:

B

c

Perform a bind without automatically calling the LINK Processor.

Checks for binding errors without generating BINDERS and ADALINKS
elements.

Causes the binder to read ADABIND commands from the runstreamn.

Causes the binder to print all error and warning messages issued
by the binder and the linker.

Produces a long listing of the binding phase including:
list of the libraries used by the program
list of the units used by the program
list of the elaboration order of the units

Also causes the L option to be used by the LINK Processor.

Prevents nonfatal warning messages from being issued by the
binder.

Causes the binder and the 1linking system to produce short
listings.

There are no Keyword options for the binder or the Linker.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is
type INTEGER is range -34_359_738_367 .. 34_359_738_367;

type FLOAT is digits 7
range -2#0.111 111 111 111 111 111 _111_111_ 111#E+127 ..
2#0.111°111 111 111 111 11171111311 111#E+127;

type LONG_FLOAT is digits 17 X
range -2#0.111111 111111 111111 113111 111111
111111_111111_ 111111_111111_111111#E+1023 .o
2#0,111111 111111 111111 111111 111111

111111111111 111117 111117 11111T#E+1023;

type DURATION is delta 2#0.00C_000_000_000_000_001# range
-86_400.0 .. 86_400.0;

end STANDARD;

Appendix F

Implementation-Dependent Language
Features

The Ada language allows for certain machine dependencies that are described in the
UCS Ada Programming Reference Manual Volume 1. Although no machine-dependent
syntax or semantic extensions or restrictions are allowed, the standard does allow for
the following implementation dependencies:

Implementation-dependent pragmas and attributes

The machine-dependent conventions that the UCS Ada Programming Reference
Manual Volume 1 describes in Section 13

The restrictions on representation clauses that Ada allows

The purpose of this section, as required by the Ada language, is to describe each
implementation-dependent characteristic of UCS Ada. As such, its subsections include
the following:

7830 7287-000

The form, allowed places, and effect of every implementation-generated pragma
The name and the type of every implementation-dependent attribute

The specification of the package SYSTEM

The description of the representation clauses

The conventions used for any implementation-generated name denoting
implementation-dependent components

The interpretation of expressions that appear in address clauses, including those
for interrupts

Any restrictions on unchecked conversions

Any implementation-dependent characteristics of the input-output packages
Characteristics of numeric types

Other implementation-dependent characteristics

“‘ ' lm‘pléﬁjentation-Dependent Language Features

F.1.

F.1.1.

Pragmas

The following subsections describe the form, allowed places, and effect of every
implementation-dependent pragma in UCS Ada. Unless noted in this section, UCS Ada
implements all pragmas as described in Section 13 of the UCS Ada Programming
Reference Manual Volume 1.

The following pragmas are allowed in an Ada program but the compiler ignores them.
These pragmas have no effect on the compilation of the program or the program itself.

e MEMORY SIZE

OPTIMIZE

[J
¢ STORAGE_UNIT
¢ SYSTEM_NAME

The only pragmas that are permitted to appear before a compilation unit (or a context
clause preceding a compilation unit) are LIST and PAGE.

Standard Pragmas

UCS Ada supports the standard pragmas described in Section 13 of the UCS Ada
Programming Reference Manual Volume 1. The following table identifies any
characteristics of these pragmas that are specific to the UCS implementation of Ada.

INLINE

Pragma Characteristics
CONTROLLED | The compiler performs automatic storage reclamation whether or not a
. program specifies this pragma.
Pragma INLINE only turns on inline subprogram expansion when you specify

the compiler keyword option EXPAND on the compiler call. Additionally, the
EXPAND keyword option does not affect the program unless you specify the
EXPAND option when you compile the calling subprogram and the
procedure body.

You can also turn on inline subprogram expansion without using pragma
INLINE by using just the EXPAND option at compile time. In this case, inline
expansion to increase execution efficiency only occurs on local subprograms
that are called once.

The compiler will never inline a subprogram that is called in a declarative
part of a program unit.

continued

7830 7287-000

e XX

Chae
‘s

Implementation-Dependent Language Features

continued

Pragma Characteristics

INTERFACE See Section for a description of this pragma.

PACK The following restrictions apply to this pragmé:

o |t is supported for an array only if any of the constraints on the array
element or any of its subcomponents is static. If this is not the case, the
compiler ignotes thz pragma.

® It is not allowed for records

SUPPRESS This pragma also supports the check identifier ALL_CHECKS. Specifying this
option suppresses all of the run-time checks that can be performed on a
compilation unit.

F.1.2. Nonstandard Pragmas
This section describes pragmas that are not defined by the Ada standard, but that are
available in UCS Ada.

Pragma INTERFACE_NAME
See Section for a description of this pragma.

Pragma IMPROVE

This pragma provides the capability to suppress certain implicit (compiler-generated)
components in record types. This improves the following for records:

® Space usage
® Processing time

Formats

pragma IMPROVE(TIME,record_type);
pragma IMPROVE(SPACE,record_type);

where record_type denotes which record type should have the chosen representation.
Pragma IMPROVE is ignored if the second argument is not a record type.

If TIME is specified, the compiler inserts all of the necessary implicit record components
needed for the record type. These components are as follows (see F.2.2 and F.4.10):

e RECORD _SIZE
e VARIANT INDEX

7830 7287-000 F-3

N v
FERY N 7T

> *
- A%
< ¢

ilmplém‘ghtation-Dependent Language Features

¢ ARRAY_DESCRIPTOR
e RECORD_DESCRIPTOR

The TIME format is the default case if pragma IMPROVE is not explicitly specified for
a record type.

When you use the SPACE format, the compiler inserts a VARIANT _INDEX or a
RECORD_SIZE compenent only if the component appears in a record representation
clause that applies to the record type. You can use a record representation clause in this
way to keep one implicit component while suppressing the other. The use of this
pragma results in a smaller record storage area. However, this space savings causes
slower program execution because the compiler must generate and call additional
subprograms to compensate for the reduced amount of information that is available to
the compiler.

A pragma IMPROVE statement that applies to a given record type can occur anywhere
that a representation clause is allowed for the type. A program can only specify one
pragma IMPROVE statement for a given record type. The compiler ignores the second
and subsequent occurrences of the pragma for the record type.

Pragma INDENT

Section describes the use of the INDENT pragma.

Pragma NON_ADA_ACCESS

F-4

This pragma is used on an access type. It specifies that an object pointed to by an access
object of this type may not be in the standard bank used for Ada allocations (the Ada
heap bank).)

Format
pragma NON_ADA_ACCESS (access_type);

where access__ty;;e is an Ada access type.

This pragma could be used on a pointer that is set outside of Ada code (for example, a
parameter passed to UCS Pascal that is an OUT access object).

When you specify pragma NON_ADA_ACCESS for an access type, the internal format
of an access object uses a 36-bit extended mode virtual address (in the L-BDI-offset
format). The internal format of an access object whose type does not specify this
pragma is a 36-bit Ada heap bank offset.

If a user is performing UNCHECKED_CONVERSION between objects of type access
and type SYSTEM.ADDRESS, the access type should be declared using pragma
NON_ADA_ACCESS because an object of type SYSTEM.ADDRESS contains a 36-bit
virtual address.

7830 7287-000

Implementation-Dependent Language Features

Generally, do not use the pragma NON_ADA_ACCESS on an access type when the type
being accessed and the access type itself are both unconstrained (as an example, type
ACC_STRING is STRING;). The exception to this rule is if the access object is
initialized through a NEW statement. The reason for this is that the compiler assumes
that a descriptor for the unconstrained object is found in the storage that precedes the
object.

7830 7287-000 F-5

Implementation-Dependent Language Features

F.2. Attributes

This subsection lists the name and type of every :mplementation-dependent attribute in
UCS Ada. The following types of attributes are described in the following subsections:

¢ Standard
e Non-Standard

F.2.1. Standard Attributes
UCS Ada implements all standard attributes in accordance with the Ada standard.

See F.9.2 for the values given to the attributes for floating-point types.

F.2.2. Nonstandard Attributes
UCS Ada implements the following attributes that are not defined in the Ada standard:

¢ Record representation clause attributes
¢ Other nonstandard attributes

Record Representation Clause Attributes

The compiler creates special record components for certain record type definitions.
Such record components are implementation-dependent; the compiler uses them to
improve the quality of the generated code for certain operations on the record types.
The criteria the compiler uses to create these components are implementation-
dependent.

The record representation clause attributes

e Are only allowed in record representation specifications

e Are implicitly inserted by the compiler, if not specified
Are not needed if used in application programs involving only Ada code
Can be used for interlanguage calls passing records as parameters

The following is a list of the attributes that you can refer to in record representation
clauses:

F-6 7830 7287-000

Implementation-Dependent Language Features

Attribute

Description

ARRAY_DESCRIPTOR

C'ARRAY_DESCRIPTOR is allowed for a prefix C that denotes a record
component of an array type whose component subtype definition
depends on discriminants. This attribute refers to the record
component introduced by the compiler to store information on
subtypes of components that depend on discriminants.

OFFSET

C'OFFSET is allowed for a prefix C that denotes a record component
of an array or record type whose constraints are not static. This
attribute refers to the record compo:.ent introduced by the compiler to
store the offset of component C fru:m the start of the record object.

This component exists for components that have dynamic constraints,
except for the first such component.

RECORD_DESCRIPTOR

C'RECORD_DESCRIPTOR is allowed for a prefix C that denotes a
record component of a record type whose component subtype
definition depends on discriminants. This attribute refers to the
record component introduced by the compiler to store information on
cubtypes of components that depend on discriminants.

RECORD_SIZE

T'RECORD_SIZE is allowed for a prefix T that denotes a record type.
This attribute refers to the record component introduced by the
compiler to store the size of the record object.

This component exists for objects of a record type with defaulted
discriminants when the sizes of the record objects depend on the
values of the discriminants (unless a pragma IMPROVE statement
applies to the record type).

VARIANT_INDEX

T'VARIANT_INDEX is allowed for a prefix T that denotes a record
type. This attribute refers to the record component introduced by the
compiler to assist in the efficient implementation of discriminant
checks.

This component exists for objects of a record type with a variant part
{unless a pragma IMPROVE statement applies to the record type).

The compiler issues an error message if you refer to an implementation-dependent
component that does not exist in the specified record. If the implementation-dependent
component does exist, the compiler checks that the storage location specified in the
record representation clause is compatible with the treatu.ent of this component and
tne storage locations of other components. The compiler issues an error message if this

check fails,

7830 7287-000

F.7

“é

Implementation-Dependent Language Features

Other Nonstandard Attributes

F-8

In addition to the attributes used in record representation clauses, UCS Ada defines the
following implementation-dependent attributes:

Attribute

Description

EXCEPTION_CODE

E'EXCEPTION_CODE applies to an exception name E. It returns the
internal code associated with the exception. The value of this
attribute is of the type universal-integer.

DESCRIPTOR_SIZE

T'DESCRIPTOR_SIZE applies to a type or subtype T. It returns the
size in bits of the descriptor associated with the object or type (this
size is defined to be 0 if the type is not an array type or has no
associated descriptor). The value of this attribute is of the type
universal-integer.

IS_ARRAY

T'IS_ARRAY applies to a type or subtype T. It returns TRUE if the type
is an array type, FALSE if it is not. The value of this attributeis -
of the predefined type BOOLEAN.

7830 7287-000

v

L, B
. A%

Implementation-Dependent Language Features

F.3. Package SYSTEM

This subsection presents the specification of package SYSTEM, which contains system-

dependent configuration information. See the UCS Ada Programming Reference
Manual Volume 1 for more information about this package.

package SYSTEM is

-- System Dependent Named Numbers

MIN_INT : constant := -(2**35 - 1) ;
MAX_INT : constant := 2**35 -1
MAX DIGITS : constant := 17 ;
MAX_MANTISSA : constant := 35 ;
FINE_DELTA : constant := 24#1.0#E-35 ;
TI1CK : constant := 0.0002 ;

type ADDRESS is range MIN_INT .. MAX_INT ;

type NAME is (UCS) ;
SYSTEM_NAME : constant NAME := NAME'FIRST ;

STORAGE_UNIT : constant := 36 ;
NUMBER_OF_BANKS : constant := 64 H

WORDS_IN A BANK : constant := 262 144 ;
MEMORY SIZE : constant := NUMBER_OF_BANKS * WORDS_IN_A_BANK ;

subtype PRIORITY is INTEGER range 1 .. 1 ;
. procedure ELIMINATE_NEGATIVE_ZERO (OBJECT : in out INTEGER):

end SYSTEM;

7830 7287-000

F-9

~|rﬁplementétion-Dependent Language Features

F.4.

F-10

Representation Clauses

This subsection explains how the UCS Ada compiler represents and allocates objects and
how it is possible to control this using representation clauses, The subsection also
describes the applicable restrictions on representation clauses.

The representation of an object is closely connected with its type. For this reason, the
discussion that follows addresses the representation of the following types and their
corresponding objects:

Enumeration

Character

Boolean

Integer

Floating point

Fixed point

Access

Task

Array

Record

Except in the case of array and record types (called composites), the description of each
type is independent of the others. To understand the concepts of array and record
types, it is first necessary to understand the their components.

Apart from implementation-defined pragmas, Ada providé three means to control the
size of objects:

® A (predefined) pragma PACK statement when the object is an array

® A record representation clause, when the object is a record or a record component
¢ Asize specification

For each class of types, the effect of a size specification is described. Interaction

between size specifications, packing and record representation clauses is described
under array and record types.

UCS Ada does not support size representation clauses on types derived from private
types when the derived type is declared outside the private part of the defined package.

The representation of data types are described in terms of their logical and default sizes,
and their physical size and alignment as defined below:

7830 7287-000

Implementation-Dependent Language Features

fharacteristic Description

Logical size The minimum number of bits acceptable to hold the value of the type.
This is also called the minimum size.

Default size The smallest appropriate data size manipulated directly by the target for
the type in question.

Physical size The memory size actually allocated to hold the object. Usuafly this will
be one of the sizes above and cannot be smaller than the logical size.

Physical alignment | The alignment in memory of the allocated storage with respect to byte or
word boundaries,

For scalars, the entire storage allocated to an object (the physical size) is loaded when
the program accesses the object. Bits within the physical size but not within the logical
size are zero for unsigned quantities, or sign extended for signed quantities.

The design of UCS Ada limits the default representation of data types to that which the
hardware directly and efficiently supports. However, representation clauses provide
user control of data representation at the bit level. These representations are often not
handled as efficiently as the defaults.

Types and Subtypes
By default, subtypes have the same internal representation as their base type. Itis

possible to represent a subtype with a range constraint that is both

¢ Contained in but not equal to the range of its base type

e . Contained in a smaller amount of storage than the base type

For example, a program can map a subrange of INTEGER onto a quarter word (9 bits)

if the bounds of the constraint fall within the range -255 .. 255. UCS Ada does not.
adopt such representations by default.

Derived Types
By default, UCS Ada maps derived types the same as their base types.

7830 7287-000 F-11

N X

‘Implementation-Dependent Language Features

F.4.1. Enumeration Types

The following information describes the UCS Ada representation of enumeration types.

Internal Codes of Enumeration Literals

When no enumeration representation clause applies to an enumeration type, the
internal code associated with an enumeration literal is the position number of the
enumeration literal. Thus, for an enumeration type with n elements, the internal codes
are the integers, 0, 1, 2, 8,..,, n-1.

A program can provide an enumeration representation clause to specify the value of
each internal code as described in the discussion on enumeration representation clauses
in the UCS Ada Programming Reference Manual, The UCS Ada Compiler fully
implements enumeration representation clauses.

As internal codes must be machine integers, enumeration representation clauses must
provide internal codes in the range between -235.1 and 235.1,

Encoding of Enumeration Values

By default, enumeration types are represented as 36-bit unsigned quantities. Their
logical size is the minimum number of bits needed to hold the value of the upper bound.
The value of an enumeration element is its position number as defined in the discussion
on enumeration values in the UCS Ada Programming Reference Manual Volume 1. A
program processed by the UCS Ada compiler always represents an enumeration value
by its internal code.

Minimum Logicai Size of an Enumeration Subtype

F-12

The minimum size of an enumeration subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype valuesin normal binary
form.

For a static subtype, if it has a null range, its minimum size is 1. Else, the minimum
size is calculated as follows:

7830 7287-000

A

Implementation-Dependent Language Features

SN .. Then the minimum size ks ...
m>0 the smallest positive integer such that M < 2**L-1.
’ m<0 the smallest positive integer such that

-2**(L-1)-1 < mand M < 2**(L-1)-1.

Legend

m is the lower bound of the subtype
M is the upper bound of the subtype
L is the minimum size in bits

Example

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-=- The minimum size of COLOR is 3 bits.

subtype BLACK AND_WHITE is COLOR range BLACK .. WHITE;
.- ’ -~ The minimum size of BLACK AND WHITE is 2 bits.

subtype BLACK OR WHITE is BLACK AND_WHITE range X..X;

-- Assuming that X is not static, the minimum size of BLACK OR _WHITE is
-= 2 bits (the same as the minimum size of the static type mark

-- BLACK_AND_WHITE).

Size of an Enumeration Subtype

The default size of all enumeration types is 36 bits. UCS Ada does not support
enumeration types containing more than 2°°-1 elements. The default alignment is
word alignment.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to
a first named subtype. The size specification must of course specify a value greater than
or equal to the minimum size of the type or subtype to which it applies.

Example

type ENUM_TYPE1 is (A,8,C,D,E,F,G,H);
for ENUM_TYPE1'SIZE use 3;
-- The size of type ENUM_TYPEl is three bits.

type ARRAY_TYPEl is array(l .. 100) of ENUM_TYPEL;
ARRAY1: ARRAY_TYPE1;

-- The size of ARRAY1 is 300 bits.

-- Without the 'SIZE clause for ENUM_TYPE1,

-- the size of ARRAY1 would be 100 words

7830 7287-000 F-13

A\“»
aé

‘&

Implementation-Dependont Language Features

UCS Ada fully implements size specifications. Nevertheless, as enumeration values are
coded using integers, the specified length cannot be greater than 36 bits.

Size of the Objects of an Enumeration Subtype

An object of an enumeration subtype has the same size as its subtype provided its size is
not constrained by the following:

e A record component clause
o APACK pragma

User-Specified Representations

The compiler only accepts a user-specified enumeration representation clause if it has
the following properties:

¢ Has a range between 235.1 and -(235.1).
¢ Preserves the ordering relationship on the type (Ada language requirement)

Note, in particular, that UCS Ada allows negative values.

The logical size of an enumeration type to which an enumeration representation clause
applies is the logical size of an integer type whose bounds are the lower and upper values
specified by the user. Hence, the enumeration type is mapped as this integer type is
mapped.

A user-specified length clause is only accepted if it specifies n bits, where n is no larger
than 36 and no smaller than the logical size of the enumeration type. Note that a length
clause does not change the alignment of a data item. You can, however, control the
alignment of data within arrays and records by using pragma PACK and record
representation clauses, respectively.

F.4.2. Character Types
Character types are enumeration types containing at least one character literal (see the
UCS Ada Programming Reference Manual Volume 1). However, storage allocation for
the predefined type character and subtypes of character are somewhat different than for

enumeration types. This section describes the differences from enumeration types.

Derived types of the predefined type character follow the normal rules for enumeration
types. The following table lists the character type attributes and their descriptions.

F-14 7830 7287-000

Implementation-Dependent Language Features

1 Atribute Description
Type Default physical size: 9 bits
Container Default size: 36 bits (that is, a word is allocated for a character object, even

though only 9 bits in the word are used).

Justification The justitication of a character object in a word is as follows:

o A record component of type character is left justified. Therefore, by
default, a character object goes in the leftmost 9 bits (also known as Q1)
of the word. The rest of the word is not used (unless a record
representation clause used for the record type causes some other object
to be placed there),

o Acharacter object that is not a record component is right justitied.
Therefore, a standalone character scalar goes in the rightmost 9 bits (also
known as Q4) of the word.

By default, allocation of an array of type character is 1 word per array element.
However, there are ways to get around this type of allocation. For example, to get an
array of type character with four elements per word (that is, 1 array element per byte),
one of the following could be done:

¢ Specify pragma PACK for the array type. For example:

type ARR1_TYPE is array(1..100) of CHARACTER
pragma PACK (ARR1 _TYPE);

" Note that the predefined type string is defined as an array of predefined type
character using pragma PACK, so a string object has four characters per word.

® Specify a size clause of nine bits for a derived character type. For example:
type CHAR1 TYPE is new CHARACTER;
for CHAR1'SIZE use 9;
type ARR2_TYPE is array(1..100) of CHAR1_TYPE;

If a size specification is used for a character type, the length must be greater than or
equal to the minimum size (normally seven bits), and less than or equal to 36 bits.

7830 7287-000 F-15

Implementation-Dependent Language Features

F.4.3. Boolean Types

Boolean types are enumeration types. However, storage allocation for the predefined
type boolean and subtypes of boolean are somewhat different than for enumeration
types. This section describes the differences from enumeration types.

Derived type of the predefined type boolean follow the normal rules for enumeration
types. The following table lists the boolean type attributes and their descriptions.

Attribute Description

Physical Size Default physical size: 9 bits

Container Size | Default container size: 36 bits (that is, a word is allocated for a boolean
object, even though only 9 bits in the word are used). In the 9 bits of a
boolean object, the upper eight bits always contain zero, with the low bit
being either zero (FALSE) or one (TRUE).

Justification The justification of a boolean object in a word is as follows:

e A record component of type boolean Is left justified.
Therefore, by default, a boolean object goes in the leftmost 9 bits (also
known as Q1) of the word. The rest of the word is not used (unless a
record :epresentation clause used for the record type causes some other
object to be placed there),

@ A boolean object that is not a record component is right justified.
Therefore, a standalone boolean scalar goes in the rightmost 9 bits (also
known as Q4) of the word.

By default, allocation of an array of type boolean is 1 word per array element. However,
there are ways to get around this type of allocation. The following are examples.

o To get an array of type boolean with 36 elements per word (that is, 1 array element
per bit), specify pragma PACK for the array type. For example:

type ARR3_TYPE is array(1..200) of BOOLEAN;
pragma PACK(ARR3_TYPE);

® To get an array of type boolean with 4 elements per word (that is, 1 element per
byte), use a size clause specifying 9 bits for a derived boolean type. For example:

type BOOL1 _TYPE is new BOOLEAN;

for BOOL1'SIZE use 9;
type ARR4_TYPE is array(1..50) of BOOL1 TYPE;

F-16 7830 7287-000

W A A P ar

Implementation-Dependent Language Fzatures

If a size specification is used for a boolean type, the length must be greater than or equal
to the minimum size (normally one bit), and less than or equal to 36 bits.
F.4.4. Integer Types

The following information describes the UCS Ada representation of integer types.

Encoding Integer Values
The Unisys 1100/2200 architecture supports one’s complement integer values. The full
set of arithmetic operations is available on full-word integer values only. Thus, there is
one predefined integer type, INTEGER, with the following attributes:

INTEGER'FIRST -2%5-1 (-34_359_738_367)
INTEGER'LAST 2%5-1 (+34_359_738_367)

By default, the physical size of an integer object is 36 bits and it is word aligned.

Minimum Size of an Integer Subtype

The minimum size of an integer subtype is the minimum number of bits that is
necessary for representing the internal codes of the subtype values in normal binary
form. That is, the representation is in an unbiased form that includes a sign bit only if
the range of the subtype includes negative values.

If a static subtype has a null range, the minimum size is 1. Otherwise, the minimum size

is calculated as follows:
it.. Then the minimum size is ...
m>0 the smallest positive integer such that M < 2**L-1.
m<0 the smallest positive integer such that
2*%(L-1)-1 < mand M < 2**(L-1)-1.

Legend

m is the lower bound of the subty e
M is the upper bound of the subtype
L is the minimum size in bits

Example

subtype S is INTEGER range 0..7;
-~ The minimum size of S is 3 bits.

subtype D is S range X .. Y;

7830 7287-000 F-17

'I
Coke

‘implementation-Dependent Language Features

-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of its type mark S).

Size of an Integer Subtype
The size of the predefined INTEGER type is 36 bits by default.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is 36 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must specify a value greater than or equal to the
minimum size of the type or subtype to which it applies.

Example

type INT1_TYPE is range 1 .. 511;

for INT1_TYPE'SIZE use 9;

-- INT1_TYPE is an integer type, but its size is
== 9 bits because of the SIZE clause.

subtype INT2TYPE is INT1_TYPE range 0 .. 255;
-- The size of INT2_TYPE is 9 bits because the
-~ size of its base type is 9 bits.

UCS Ada fully implements size specifications. Nevertheless, as integers are
implemented using one-word integers, the specified length cannot be greater than 36
bits.

Size of Objects of an Integer Subtype
Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

User-Specified Representation
The UCS compiler accepts a user-specified length clause only if it specifies n bits, where
n is no larger than 36 and no smaller that the logical size of the integer type. Note that a
length clause does not change the alignment of a data item. The alignment of data

within arrays and records can, however, be controlled by use of the PACK pragma and
record representation clauses.

F-18 7830 7287-000

Implementation-Dependent Language Features

F.4.5. Floating-Point Types

The following information describes the UCS Ada representation of integer types.

Encoding Floating-Point Values

UCS Ada directly maps two predefined floating types, FLOAT and LONG_FLOAT, onto
the Unisys 1100/2200 architecture to support floating-point formats. The formats are
as follows:

type FLOAT is digits 7
range -(2.0**127*(1.0-2.0**(-27)}) ..
2,0%*127*(1.0-2.0**(-27));

-- range approximately -(1.70*10,0**38) ., 1.70*10.0**38;

type LONG_FLOAT is digits 17
range -(2.0%**1023*(1.0-2.0**(-60))) ..
2.0%*1023*(1,0-2,0%*(-60)) ;

-- range approximately -(8.99*10.0**307) .. 8.99*10.0**307;

Other FLOAT and LONG_FLOAT characteristics are listed in F.9.2.

By default, UCS Ada internally represents floating-point types as one of the predefined
representations described above. Which predefined representation is chosen depends on
the number of digits specified in the DIGITS clause in a type specification, as described
below:

Default Size Digits

36 bits (FLOAT) 1.7
72 bits (LONG_FLOAT) 8..17

Floating-point types with more than 17 digits are not supported.

By default, the physical (allocated) size for a floating-point object is its default size as
above and it is word aligned.

7830 7287-000 F-19

Implementation-Dependent Language Features

Minimum Size of a Floating-Point Subtype

The minimum size of a floating-point subtype is one of the following:
o 36 bits if its base type is FLOAT or a type derived from FLOAT
e 72 bitsif its base type is LONG_FLOAT or a type derived from LONG_FLOAT

Size of a Floating-Point Subtype

The sizes of the predefined floating-point types FLOAT and LONG_FLOAT are
respectively 36 and 72 bits.

The size of a floating-point type or the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating-point type or first-named subtype by
using a size specification is its usual size (36 or 72 bits).

Size of Objects of a Floating-Point Subtype

An object of a floating-point subtype has the same size as its subtype.
User-Specified Representation

UCS Ada only accepts a user-specified length clause if it specifies the default size (36 or
72 bits) as previously described.

7830 7287-000

implementation-Dependent Language Features

F.4.6. Fixed-Point Types

The following information describes the UCS Ada representation of fixed-point types.

'SMALL Specification of a Fixed-Point Type

If no specification of 'SMALL applies to a fixed-point type, then the value of 'SMALL is
determined by the value of delta as defined by the UCS Ada Programming Reference
Manual Volume 1.

Restriction

T'SMALL must have a value that is a power of 2. The value of the exponent must be
between -1059 and 988.

Encoding of Fixad-Point Values

The UCS Ada compiler manages fixed-point types as the product of a signed mantissa
and the constant 'SMALL. UCS Ada implements the signed mantissa as a signed
integer. 'SMALL is a compile-time quantity that is the largest power of 2 that is less
than the delta specified in the declaration of the type.

Thus, UCS Ada implements fixed point types as one’s complement values. A fixed point
object must fit in 36 bits or less.

By default, UCS Ada implements fixed-point numbers as 36-bit, one’s-complement
vajues and aligns them on a word boundary. If we define MANTISSA as the smallest
number such that

2**MANTISSA = max(abs(upper_bound),abs(lower_bound))/SMALL

then the logical size of a fixed point-type is MANTISSA + 1 and hence, fixed-point types
with MANTISSA > 35 are not supported.

A value V of a fixed-point subtype F is represented as the integer
Y / F'BASE'SMALL
Example

type FIX1_TYPE is delta 0.01 range 0.0 .. 10.0;

-- The value of FIX1_TYPE'SMALL is 2**(-7),

which is the largest power of 2 that is less that 0.01
fl: FIX1_TYPE := 0.5;

The value 0.5 is represented as the integer

0.5 / {2**(-7)), or 64

7830 7287-000 F-21

3\0"

Implementation-Dependent Language Features

Minimum Size of a Fixed-Point Subtype

The minimum size of a fixed-point subtype is the minimum number of bits that is
necessary for representing the values of the range of the subtype using the 'SMALL
value of the base type. That is, UCS Ada represents the minimum size in an unbiased
form that includes a sign bit only if the range of the subtype includes negative values.

For a static subtype, if it has a null range its minimum size is 1. Otherwise,sand S
being the lower and upper bounds of the subtype, if i and I are the integer
representations of m and M, the smallest and greatest model numbers of the base type
such that s < m and M < §, then the minimum size L is determined as follows. Fori =
0, L is the smallest positive integer such thatI < 2**L-1. Fori < 0, L is the smallest
positive integer suck that -2**(L-1)-1 <iandI < 2**(L-1)-1.

Example

type F is delta 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
-~ The minimum size of S is 7 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size of a Fixed-Point Subtype

F-22

When no size specification is applied to a fixed-point type or to its first-named subtype,
its size and the size of any of its subtypes is 36 bits.

When a size specification is applied to a fixed point-type, this fixed-point type and each
of its subtypes has the size specified by the length clause. The same rule appliesto a
first-named subtype. The size specification must of course specify a value greater than
or equai to the minimum size of the subtype to which it applies.

Example

type F is delta 2.0 range 0.0 .. 500.0;

for F'SIZE use 9;

-- As noted above, the minimum size of F is 8 bits.

-- The actual size of F is 9 bits because of the SIZE clause.

-- Without the SIZE clause, the size of F would be the default 36 bits.

UCS Ada implements size specifications. Nevertheless, as fixed point objects are
represented using machine integers, the specified length cannot be greater than 36 bits.

7830 7287-000

Implementation-Dependent Language Features

Size of the Objects of a Fixed-Point Subtype

Provided its size is not constrained by a record component clause or a PACK pragma, an
object of a fixed-point type has the same size as its subtype.

User Specified Representations

F.4.7.

F.4.8.

UCS Ada does not support representation clauses that specify 'SMALL to be other than
a power of 2.

The compiler only accepts a user-specified length clause if it specifies n bits, where n is
no smaller than the logical size or no larger than 36.

Composite Types

UCS Ada implements all composite (array and record) types by storing them
contiguously in memory for easier access, input, and output. By default, the
representation of an element or component is the default representation for its subtype.
That is, the default representation of an object is the same whether it is an object by
itself or a part of an enclosing object. If the elements or components are themselves
arrays or records it is impossible to change their representation.

Array Types

UCS Ada implements array objects by storing them contiguously in memory. All the
components have the same size. A gap can exist between two consecutive components
(and after the last one). All the gaps have the same size.

Array Components

If the array is not packed (that is, pragma PACK is not specified for the arrz;y type), the
size of the components is the size of the subtype of the components.

7830 7287-000 F-23

g

‘ ‘=lr;ripl'éniéﬁt\a’tion-bependent Language Features

e ey

Example

LR S pam T Sese, o
% <
[ERIN
A
?

type A is array (1..8) of BOOLEAN;

-~ The size of a component of A is the container size of
-~ type BOOLEAN (36 bits)

-- The size of an array of type A is 8 words.

type DECIMAL DIGIT is range 0..9;
for DECIMAL DIGIT'SIZE use 4;
. type BINARY_CODED DECIMAL is
array (INTEGER range <) of DECIMAL DIGIT;
-- The size of the type DECIMAL DIGIT is 4 bits. Thus in an array of
-- type BINARY_CODED_DECIMAL each component will be represented in
-- 4§ bits,

If the array is packed and its components are neither records nor arrays, the size of the
components is the minimum size of the subtype of the components.

Example

type A is array (1..8) of BOOLEAN;
pragma PACK(A);
-- The size of the components of A is the minimum size of the type BOOLEAN
-- which is one bit
type DECIMAL DIGIT is range 0..9;
type BINARY_CODED DECIMAL is
array (INTEGER range <>) of DECIMAL DIGIT;
pragma PACK(BINARY_CODED_DECIMAL);
-~ The size of the type DECIMAL DIGIT is 36 bits, but, as
-- BINARY_CODED_DECIMAL is packed, each component will be represented in
-- 4 bits,

Packing the array has no effect on the size of the components when the components are
records or arrays.

F-24 7830 7287-000

e

Implementation-Dependent Language Features

Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components, and the array is not packed, then the compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimize access to the array components and to their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each
component and subcomponent to have an address consistent with the alignment of its

subtype.

If no size specification applies to the subtype of the component, or if the array is packed,
1o gaps are inserted.

Examples of arrays of scalars
ase 1

type INT1_TYPE is range O .. 100;
type ARR1 TYPE is array(1..10) of INT1_TYPE;
-- Each component of an array of type ARR1_TYPE is one word
-- (36 bits), so every component starts on a word boundary.
-- An array of type ARR1_TYPE is ten words (360 bits).

Case 2

type ARR2_TYPE is array(1..10) of INT1_TYPE;
pragma PACK(ARR2_TYPE);
-- Each component of an array of type ARR2_TYPE is seven bits,
-- which is the minimum size of type INT1_TYPE.
-~ An array of type ARR2_TYPE is 70 bits.

Case 3

type INT2_TYPE is new INT1_TYPE;

for INT2_TYPE'SIZE use 9;

type ARR3_TYPE is array(1..10) of INT2_TYPE;

-- Each component of an array of type ARR3_TYPE

-- is one byte (nine bits), because of the SIZE clause.
~- An array of type ARR3_TYPE is ten bytes (90 bits).

Gaps in arrays of records

Record components are allocated on full word boundaries, unless a record
representation clause appears for the record type. For example, if a record component
of type STRING(1..2) is declared, it is allocated a full word in the record (if no record
representation clause appears), even though the component occupies only two bytes of
the word.

7830 7287-000 F-25

PR e N TR

LIC P

5!ifxblgmentation-Dependent Language Features

If a record is declared with one or more components that do not have sizes that are
multiples ¢ f 36 bits, then the only way to eliminate gaps in the record is to use a record
representation clause.

; . If an array of such a record type (with a record representation clause) is declared, then
: . no gaps are inserted in the array if one of the following conditions apply:

e a SIZE specification applies to the record type
e apragma PACK applies to the array type.

Examples
Case 1

type R is
record
K: INTEGER;
B: STRING(1..2);
end record;

type Al is array(1..10) of R;

-- Each component of Al is two words (72 bits),

-- since no record representation clause appears for R.

-- A gap of two bytes is inserted after each component B
to force the word alignment of each array component.
The size of an array of type Al is 720 bits (10 words).

Case 2

type A2 is array(1..10) of R;

pragma PACK(A2);

-~ As with case 1, each component of A2 is two words (72 bits).
-- The pragma PACK has no effect, since there is no

-- record representation clause for R.

-~ The size of an array of type A2 is 720 bits (10 words).

Case 3
type NR is new R;
for NR use
record
K at 0 range 0..35;
B at 1 range 0..17;

end record;

type A3 is array(1..10) of NR;

F-26 7830 7287-000

> e T

CREE e

Implementation-Dependent Language Features

Each component of A3 is 54 bits (6 bytes).

A gap of two bytes is inserted after each component 8
to force the word alignment of each array component,
since no SIZE clause appears for NR,

and no pragma PACK appears for A3.

-- The size of an array of type A3 is 720 bits (10 words).

Case 4

type A4 is array(1..10) of NR;

pragma PACK(A4);

-- Each component of A4 is 54 bits.

-- Gaps are eliminated, because of the record representation
-- clause for NR and the pragma PACK.

-~ The size of an array of type A4 is 540 bits (15 words).

Case §

type NR1 is new NR;
for NR1'SIZE use 54;
type A5 is array(l..10) of NRI;
pragma PACK(AS);
-- Each component of A5 is 54 bits.
-- Gaps are eliminated, because of the record representation
-- clause for NR and the SIZE clause.
-- The size of an array of type A5 is 540 bits (15 words).

Size of an Array Subtype

By default, the elements of an array are allocated by rows, each in its default
representation and on its default alignment. The default alignment of an array asa
whole is the default alignment for its element ’ype.

The size of an array subtype is obtained by multiplying the number of its components by
the sum of the size of t!.e components and the size of the gaps (if any). If the subtype is
constrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time if

¢ It has nonstatic constraints or is an unconstrained array type with nonstatic index
subtypes (because the number of components can then only be determined at run
time)

¢ The components are records or arrays and their constraints or the constraints of
their subcomponents (if any) are not static (because the size of the components and
the size of the gaps can then only be determined at run time)

7830 7287-000 F-27

e —

rlmélgmentation-bependen“t Language Features

As has been indicated above, the effect of pragma PACK on an array type is to suppress
the gaps and to reduce the size of the components. The consequence of packing an
array type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, the UCS Ada compiler fully implements array packing.

Size of an Object of an Array Subtype

The size of an object of an array subtype is always equal to the size of the subtyne of the
object.

Alignment of an Array Subtype

If no pragma PACK applies to an array subtype and no size specification applies to its
components, the array subtype has the same alignment as the subtype of its
components.

If a pragma PACK applies to an array subiype or if a size specification applies to its
components (so taat there sare no gaps), the alignment of the array subtype is the lesser
of the alignmeut of the subtype of its components and the relative displacement of the
componeriis.

User-Specified Representations

The only size that can be specified for an array type or first-named subtype using a size
specification is its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of an array is as expected by the application.

F.4.9. String Types

A string type is ‘reated as a packed array of predefined type CHARACTER. Therefore,
strings are mapped four characters to a word.

L]

F.4.10. Record Types

F-28

Each record is allocated in a contiguous area of storage units. The size of a record
component depends on its type. Gaps may exist between components.

The positions and the sizes of the comnponents of a record type object can be controlled

using a record representation clause as described in the UCS Ada Programming
Reference Manual Volume 1, Section 13.4. In UCS Ada, there is no restriction on the

7830 7287-000

implementation-Dependent Language Features

position specified for & component of a record. Bits within a storage unit are numbered
from O to 35, with the most significant (leftmost) bit numbered 0. The range of bits
specified in a component clause may extend :ato following storage units. Ifa
component is not a record or an array;, its size can be any size from the minimum sized
to the size of its subtype. If a component is a record or an array, its size must be the size
of its subtype.

Example

type REC1_TYPE is
record
Fl: LONG_FLOAT;
B1, B2: BOOLEAN;
end record;

for REC1_TYPE use -~ record representation clause
record
Fl at 0 range 0 .. 71; -~ Words O-1 .
Bl at 2 range 0 .. 8; -~ Bits 0-8 (first byte) of word 2
B2 at 2 range 9 .. 17; -~ Bits 9-17 (second byte) of word 2
end record;

If no record representation clause appeared for REC1_TYPE,
F1 would be in words 0-1 and

Bl would be in the first byte of word 2.

However, B2 would appear in the first byte of word 3,

-- since all record components would be word aligned.

A record representation clause need not specify the position and the size for every
component. If no component clause applies to a component of a record, its size is the
size of its subtype. The compiler chooses its position s0 as to optimize access to the
components of the record: the offset of the component is chosen as a multiple of the
alignment of the component subtype. Moreover, the compiler chooses the position of the
component 80 as to reduce the number of gape and thus the size of the record objects.
Note, in particular, that variant parts are overlaid when possible and that holes within
previously laid out variant parts are made use of whenever possible.

Without a record representation clause, each record component normally begins on a
word boundary.

Because of these optimizations, there is not necessarily a connection between the order
of the components in a record type declaration and the positions chosen by the compiler
of the components in a record object.

Pragma PACK hus no further effect on records. The UCS Ada compiler always
optimizes the layout of records as described above.

7830 7287-000 F-29

LI
N

Implementation-Dependent Language Features

Indirect Components

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct:

Beginning of the record

Compile-time offset
DIRECT

Compile-time offset
OFFSET o

Run-time offset
INDIRECT

Figure F-1. Direct and Indirect Companents

If a record component is a record or an array, the size of its subtype can be evaluated at
run time and can even depend on the discriminants of the record. UCS Ada calls these

components dynamic components.

F-30 7830 7287-000

Ltk y

Implementation-Dependent Language Features

Example
type DEVICE is (SCREEN, PRINTER);
type COLOR is (GREEN, RED, BLUE);
type SERIES is array (POSITIVE range <) of INTEGER;

type GRAPH (L : NATURAL) is
record
X : SERIES(1 .. L); ~-- The size of X depends on L
Y : SERIES{l .. L); -~ The size of Y depends on L
end record;

Q : POSITIVE;

type PICTURE (N : NATURAL; D : DEVICE) is
record
F : GRAPH{N); -- The size of F depends on N
S ¢ GRAPH(Q); -~ The size of S depends on Q
case D is
when SCREEN =>
C : COLOR;
when PRINTER =>
null;
end case;
end record;

Any component placed after a dynamic component has an offset that cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the compiler groups dynamic components together and places
them at the end of the record as follows:

7830 7287-000 F-31

L

:linplémentation-Dependent Language Features

D = SCREEN D = PRINTER
N=2 . N=1
Beginning of the record
S Offset S Offset
3 Compile-time offsets —r
F Offset . F Offset
N N
ninuustenny NN
D — T D
HUHNBHANNRIRN NN RN R NREEDN]]

c _‘ 1 T
+ Run-time offsets —— . F
- F
- - [-

Figure F-2, Record Type PICTURE: F and S Are Placed at the End of the Record

Due to this strategy, the only indirect components are dynamic ccmponents. But not all
dynamic components are necessarily indirect. If there are dynamic componentsina
component list that is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at
compilation time. '

Beginning of the record

Y Offset
L

LLUELE R L LR R
NHNBHHIRUANH
MNHUBUHNEN Y

Compile-time offset

Compile-time offset

X Size dependent on discriminant L

Run-time offset

Y Size dependent on discriminant L

Figure F-3. Record Type GRAPH: The Dynamic Component X Is a Direct Component

F-32 7830 7287-000

Implementation-Dependent Language Features

For every dynamic component of a record (except the first), a static offset pointer is
created to contain the word or bit displacement of the dynamic component from the
start of the record. If these bounds are dynamic, for example in the case of the offset
pointer of the second of two dynamic sized components, the corresponding offset
pointer is always one word long.

If C is the name of an indirect component, the offset of this component can be denoted
in a component clause by the implementation generated name C’'OFFSET.

Implicit Components

In some circumstances, access to an object of a record type or to its components involves
computing information that depends only on the discriminant values. To avoid
recomputation (which would degrade performance) the compiler stores this information
in the record objects, updates it when the values of the discriminants are modified and
uses it when the objects or its components are accessed. This information is stored in
special components called implicit components.

An implicit component can contain information that is used when the record object or
several of its components are accessed. In this case the component is included in any
record object (the implicit component is considered to be declared before any variant
part in the record type declaration). There can be two components of this kind; one is
called RECORD_SIZE and the other VARIANT INDEX.

On the other hand, an implicit component can be used to access a given record
component. In that case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called an ARRAY DESCRIPTOR or a
RECORD_DESCRIPTOR.

RECORD_SIZE

This implicit component is created by the compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage
effectively allocated for the record object may be more than this).

The value of a RECORD_SIZE component may denote a number of bits or a number of
storage units (words). In general it denotes a number of storage units, but if any
component clause specifies that a component of the record type has an offset or a size
that cannot be expressed using storage units, the value designates a number of bits.

The implicit component RECORD_SIZE must be large enough to store the maximum
size of any value of the record type. The compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0 .. MS.

7830 7287-000 F-33

Li'mplementa‘tion-Dependent Language Features

s If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation-generated name R'RECORD_SIZE.

This allows you control over the position of the impiicit component in the record.

VARIANT INDEX

This implicit component is created by the compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used
when a discriminant check is to be done.

Component lists in variant parts that themselves do not contain a variant part are
numbered. These numbers are the possible values of the implicit component
VARIANT INDEX.

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND : VEHICLE := CAR) is
record
SPEED : INTEGER;
case KIND is
when AIRCRAFT | CAR =>
WHEELS : INTEGER;
case KIND is
when AIRCRAFT => -1
WINGSPAN : INTEGER;
when others => - 2
null;
end case;
when BOAT => -- 3
STEAM : BOOLEAN;
when ROCKET => -- 4
STAGES : INTEGER;
end case;
end record;

The value of the variant index indicates the set df components that are present in a

record value:
Variant Index Set
1 {KIND, SPEED, WHEELS, WINGSPAN}
2 {KIND, SPEED, WHEELS}
3 {KIND, SPEED, STEAM}
4 {KIND, SPEED, STAGES}

F-34 7830 7287-000

re

Implementation-Dependent Language Features

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Component Interval -
KIND -
SPEED -
WHEELS 1..2
WINGSPAN 1..1
STEAM 3.3
STAGES 4.4

The implicit component VARIANT INDEX must be large enough to store the number V
of component lists that do not contain variant parts. The compiler treats this implicit
component as having an anonymous integer type whose rangeis1.. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation-generated name R'VARIANT_INDEX.

This allows user control over the position of the implicit component in the record.

ARRAY _DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous array subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an iraplicit component of kind ARRAY_DESCRIPTOR is not described
in this documentation.

The compiler treats an implicit component of the kind ARRAY_DESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose
subtype is described by the array descriptor, this implicit component can be denoted in a
component clause by the implementation generated name C’'ARRAY_DESCRIPTOR.
This attribute allows user control over the position of the implicit component in the
record.

RECORD_DESCRIPTOR

An imi:licit component of this kind is associated by the compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORD_DESCRIPTOR is not
described in this documentation.

The compiler treats an implicit component of the kind RECORD_DESCRIPTOR as
having an anonymous array type. If C is the name of the record component whose

7830 7287-000 F-35

Cra

2 e
[N
£l b]

. .
bt N

‘ lfImp_lementa_tion-Dependent Language Features

subtype is described by the record descriptor, this implicit component can be denotad in
a component clause by the implementation-generated name
C’'RECORD_DESCRIPTOR. This attribute allows user control over the position of the
implicit component in the record.

Suppression of Implicit Components

The UCS Ada implementation provides the capability of suppressing the implicit
components RECORD_SIZE and VARIANT _INDEX from a record type. You can
accomplish this by using an implementation-defined pragma called IMPROVE (see
F.1.2).

pragma IMPROVE (TIME | SPACE , [ON =>] simple_name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the compiler inserts implicit components as described above, If on
the other hand SPACE is specified, the compiler only inserts a RECORD_SIZE and
VARIANT _INDEX if this component appears in a record representation clause that
applies to the record type, A record representation clause can thus be used to keep one
implicit component while suppressing the other.

An IMPROVE pragma that applies to a given record type can occur anywhere that a
representation clause is allowed for this type.

Size of a Record Subtype

F-36

Unless a component clause specifies that a component of a record type has an offset ora
size which cannot be expressed using storage units, the size of a record subtype is
rounded up to a whole number of words.

By default, the components of a record are allocated contiguously according to the
physical size and alignment requirements of their types. Each component is allocated
its default physical size at its default alignment. Note, however, that the order of
allocation of components is not necessarily the lexical order of the record declaration,
but is chosen by the compiler to honor optimization requirements mentioned above.
Thus, the size of a record type as a whole depends on the physical size and alignment
requirements of its individual components. By default, a record as a whole is aligned at
a word boundary.

7830 7287-000

A-.".
4

‘e

Implementation-Dependent Language Features

User-Specified Representations

The compiler ignores a user-specified pragma PACK applied to a record type. It accepts
a user-specified length clause (using the SIZE attribute) only if it specifies the exact

length of the record type.

A user record representation clause is acceptable only if, for each component, the
storage specified is no smaller than the logical size of the type of the component and the
clause specifies the correct layout including implicit components.

F.4.11. Access Types

The following table describes the UCS Ada attributes of access types.

Aﬂri_bute

Description

Encoding of Access Values

Access types represent the addresses of data allocated in
the heap. The heap mechanism always allocates an
integral number of words and data is word aligned.

Thus, UCS Ada always represents access values as word
values. If pragma NON_ADA_ACCESS (see F.1.2}is

used on the access type, the format is one word containing
an extended mode virtual address (in the format,
L-8Dl-offset). Otherwise, the format is a one-word offset
into the Ada heap bank.

The compiler uses the special value zero
(8#000000000000+#) to represent the null access value.
This value is chosen because it can be easily tested and
the initialization of access values can be performed
efficiently

Access Subtype

Minimum size of an access value: 36 bits
Size of an access subtype: 36 bits

An object of an access subtype has the same size as its
subtype. Thus, an object of an access subtype is always
36 bits.

User-Specified Representations

The compiler accepts a user-specified length clause only if
it specifies the default size of 36 bits.

7830 7287-000

F-37

5 N
Lo
A

M"‘

Implementation-Dependent Language Features

F.4.12. Task Types

The following table describes the attributes of task types.

F.5.

F-38

Attribute

Description

Encoding of Task Values

A task object is represented as a 1-word (36 bit) extended
mode virtua! address representing the address of the Task
Control Block (TCB) for the task.

(The user has no control over the contents of the TCB.)

Size of a Task Type

A size specification ("SIZE) for a task type has no effect.
The only size that can be specified using such a length
clause is 36 bits.

Example

task type T;
for T'SIZE use 36;

Storage for a Task Type

if a storage size ('STORAGE_SIZE) is specified for a task
type, then it represents the number of words allocated in
the fixed stack for a task of that type.

Example

task type T;

for TSTORAGE_SIZE use 1000;

-- A task of type T gets allocated 1000 words

-- of fixed stack space.

-- A STORAGE_ERROR exception results if the allocated
- stack space is not large enough during task execution.

The following binder commands

® TASK STACK INIT SIZE
o TASK STACK MAX SIZE
® TASK STACK INC SIZE

can be used to control the fixed stack sizes for all
non-environment tasks created during program execution
see 4.2.3).

Implementation-Generated Names

This subsection lists the conventions that UCS Ada follows when generating names that
denote implementation-dependent components.

7830 7237-000

. %e
» TN

“?

implementation-Dependent Language Features

The UCS Ada compiler may add implicit components to record objects. These fields
contain information about the variant and storage layout of the record. The
implementation-generated names are the following nonstandard attributes:

e R'RECORD_SIZE

e R'VARIANT INDEX
¢ C'RECORD_DESCRIPTOR
e C'ARRAY DESCRIPTOR
e C'OFFSET
where:
R
is the prefix denoting a record type
C

is the prefix denoting a record component

You can only use these names in representation clauses. See F.2.2 for an explanation of
their meanings.

The other nonstandard attribute names are as follows:

o TIS_ARRAY
¢ T'DESCRIPTOR_SIZE
e E'EXCEPTION_CODE

where:

T
is the prefix denoting a type or subtype

E

is the prefix denoting an exception name
See F.2.2 for a description of these attributes.
The nonstandard pragmas are as follows:

INTERFACE_NAME
IMPROVE

INDENT
NON_ADA_ACCESS

7830 7287-000 F-39

[

implementation-Dependent Language Features

See F.1.2 for a description of these nonstandard pragmas.

The UCS Ada compiler reserves the following predefined packages. Do not recompile

these packages.

e UNISYS_ADA_RUNTIME
e UNISYS_BASIC_IO

F-40

7830 7287-000

Implementation-Dependent Language Features

F.6. Address Clauses

This subsection describes the interpretation of expressions that appear in address
clauses, including those for interrupts. See the UCS Ada Programming Reference
Manual Volume 1, Section 13.5 for more information.
An address clause has the following format:

for simple_name use at simple expression;

where:

simple_name
must be one of the following:

¢ The name of an object
o The name of a subprogram, package, or task unit

e The name of a single entry

simple_expression
must be of type SYSTEM.ADDRESS

UCS Ada permits an address clause only if simple_name is an object.

7830 7287-020 F-41

implementation-Dependent Language Features

F.7.

F-42

Unchecked Conversions

The Ada standard, as documented in the UCS Ada Programiaing Reference Manual
Volume 1, requires that each implementation list its restrictions on unchecked
conversion.

Unchecked conversions are allowed only between types that have the same value for
their 'SIZE attribute (no error, however, is detected if either the target or the source is a
composite). UCS Ada does not allow unchecked conversions between unconstrained

array types.

1t is the responsibility of the programmer to determine if the desired effect of the
unchecked conversion has been achieved.

7830 7287-000

implementation-Dependent Language Features

F.8. Input/Output

This subsection lists all of the implementation-dependent characteristics of the input-
output packages. See Section 14 of the UCS Ada Programming Reference Manual
Volume 1 for the guidelines that the Ada standard establishgs.

F.8.1. Ada Files

UCS Ada implements the input/output packages as the Ada language defines them. See
F.8.2 for the implementation dependencies of the input/output packages.

Correspondence with OS 1100 Files

Ada defines the following operations for controlling external files:

® & o o o o

Procodure CREATE
Procedure OPEN
Procedure CLOSE
Procedure DELETE
Procedure RESET
Function MODE
Function NAME
Function FORM
Function IS_OPEN

Each of the Ada constructs for files declares this set of file management operations.
These constructs include the following:

7830 7287-000 F-43

Implementation-Dependent Language Features

Flie Construct Description

Sequential A sequence of records that are transferred one after the other. In
addition to those listed above, the generic package SEQUENTIAL 10
provides the following operations:

e Procedure READ
8 Procedure WRITE
® Function END_OF_FILE

See the UCS Ada Programming Reference Manual Volume 1, Section
14.2.2 for more information.

Direct A set of consecutive equal-sized records occupying consecutive positions
in a linear order that can be transferred to or from any record of the file at
any given position in the file, In addition to those listed above, the
generic package DIRECT_IO defines the following operations for direct

files:

¢ Procedure READ

o Procedure WRITE

¢ Procedure SET_INDEX

¢ Additional functions INDEX and SIZE

See Section 14.2.4 of the UCS Ada Programming Reference Manual
Yolume 1 for more information.

Text Provides the facility to do input/output in human-readable form. The
package TEXT_IO provides the facilities and operations allowed for text
files. In addition to those listed above, the TEXT_IO package defines the
following operations for text files:

GET
PUT
GET_LINE
PUT_LINE
SET INPUT
SET_OUTPUT

The functions defined for text {iles are

STANDARD_INPUT
STANDARD_OUTPUT
CURRENT_INPUT
CURRENT_OUTPUT

See the UCS Ada Programming Reference Manual Volume 1, Section 14.3
for more information on these functions along with several other
formatting operations available for text files.

F-44 7830 7287-000

e

Implementation-Dependent Language Features

Note: The standard input and the standard output files cannot be opened, closed,
resei, or deleted. For information describing why, see the UCS Ada
Programming Reference Manual Volume 1.

NAME Parameter

The NAME parameter supplied to the Ada procedures CREATE or OPEN (see the UCS
Ada Programming Reference Manual Volume 1) can represent any of the legal OS 1100
file names.

The syntax of the Ada NAME parameter is as follows:
Sile_name ::= legal_1100_file_name

The syntax of a legal OS 1100 file name as specified in the Ada NAME parameter is as
follows:

legal_1100 file_name ::= [qual*]file[(cycle)][.]
where:

qual
is the OS 1100 qualifier

file
is the 1100 file name

cycle
is the file cycle number

If either the qualifier or the file name exceeds 12 characters, then a NAME_ERROR
exception is raised. As indicated above, the qualifier and the file cycle are not
mandatory components of the NAME parameter. If the qualifier is omitted, the system
defaults to the qualifier of the current user or to the specified project-id. If the file cycle
is omitted, it defaults to the latest cycle of the file specified.

FORM Parameter
The FORM parameter supplied to the Ada procedures CREATE or OPEN is a string
defining system-dependent characteristics that can be associated with a sequential,
direct, or text input-output file. Examples of these characteristics are physical

organization and access rights.

The attributes for defining a FORM string are described in the following text.

7830 7287-000 F-45

Implementation-Dependent Language Features

Package Name: SEQUENTIAL_IO

Attribute Name Type/Range Default
Block_size Positive/1 ..2%2 -1 1792
Record_size Positive/1..2%" -1 256
Append Boolean # False
Prep_Factor Positive/224*X 1792
. Labels Standard or Omitted Standard
. Disposition Leave or Rewind Leave
#

X: Anintegerintherange 1 <X < 1170

The following table describes each attribute.

Attribute Description

Block_size The block size in words. This attribute is the file buffer. Records are
written into the block until no more records will fit. At this point the whole
block is actually written to the file. You should only change this attribute for
performance considerations. There is not a set size to use for all cases with
the exception that the block size must be a multiple of 28 words and a
multiple of the prep factor.

Record_size The record size in words. This attribute should be the size in words of the
type instantiated with the package, if the type is constrained. If the type is
unconstrained, this attribute must be specified.

Append Determines whether to open a file in update mode.

Prep_Factor The number of words used for the prep factor. This attribute is related to the
block size in that the block size is a multiple of the prep factor.

Labels Specifies whether the standard label should be used or if the labels are to be
omitted.
Disposition Determines how the file is left when it is closed. If LEAVE is specified, when

the file is closed, it is left at the position after the last READ or WRITE
operation. If REWIND is specified, when the file is closed, it is
positioned at the beginning.

F-46 7830 7287-000

A

Implementation-Dependent Language Features

Package Name: DIRECT_IO

Attribute Name Type/Range Default
Block_size Positive/1..218 .1 1792
Record_size Positive/1..216 -1 256
Append Boolean False
Max_Rec_Num Positive/1..Max_int 10000
Skeletonize Boolean True
Shared Boolean False
Prep_Factor Positive/224+x¥ 1792
Labels Standard or Omitted Standard
Disposition Leave or Rewind Leave
#

X = an integer in the range of 1 < X < 1170,

The following table describes each of the above attributes.

7830 7287-000 F-47

implementation-Dependent Language Features

F-48

Attribute

Description

Block_size

The block size in words. This attribute is the file buffer. Records are
written into the block until no more records will fit. At this point the whole
block is actually written to the file. You should only change this attribute for
perfarmance considerations. There is not a set size to use for all cases with
the exception that the block size must be a multiple of 28 words and a
muitiple of the prep factor.

Record_size

The record size in words. This attribute should be the size in words of the
type instantiated with the package, if the type is constrained. If the type is
unconstrained, this attribute must be specified.

Append

Determines whether to open a file in update mode.

Max_Rec_Num

Specifies the number of records that can be written to for the direct file. This
is the size in records of the file,

Skeletonize

Specifies whether the file is skeletonized or not. It is highiy recommended
that the file be skeletonized. The only case where the file could not be
skeletonized is if there are no holes in the file and it can be guaranteed that
no one will ever try to read a record that has never been written.

Shared

Specifies whether the file is shared by other applications.

Prep_Factor

The number of words used for the prep factor, This attribute is related to the
block size in that the block size is a muitiple of the prep factor.

Labels

Specifies whether the standard label should be used or if the labels are to be
omitted.

Disposition

Determines how the file is left when it is closed. If LEAVE is specified, when
the file is closed it is left at the position after the last READ or WRITE
operation. If REWIND is specified, when the file is closed it positioned at
the beginning.

If a RECORD_SIZE or MAX_REC_NUM is specified when the file is created, then those
same values must be used when opening the fil for reading.

7830 7287-000

‘.

Implementation-Dependent Language Features

Package Name: TEXT 10

Attribute Name Type/Range Default
Block_size Positive/1..218 .1 1792
Record_size Positive/1..216 -1 256
Append Boolean False
» Prep_Factor Positive/224*X¥ 1792
. Labels Standard or Omitted Standard
: Disposition Leave or Rewind Leave
Symb_Type SDF,Read,Alt_Read SOF
Print,Alt_Print
Punch, Alt_Punch

The range of this attribute is 224.. 218 -1 but the value must be a multiple of 224.

The following table describes each of the above attributes.

7830 7287-000 F-49

implementation-Dependent Language Features

F-50

Attribute

Description

Block_size

The block size in words. This attribute is the file buffer. Records are

written into the block until no more records will fit. At this point the whole
block is actually written to the file. You should only change this attribute for
performance considerations. There is not a set size to use for all cases with
the exception that the block size must be a muitiple of 28 words and a
muitiple of the prep factor.

Record_size

Specifies the maximum length of a text line in words (4 bytesword). The
exception USE_ERROR is raised if a program tries to set the line length
greater than this value.

Append

Determines whether to open a file in update mode.

Prep_Factor

The number of words used for the prep factor. This attribute is related to the
block size in that the block size is a muitiple of the prep factor.

Labels

Specifies whether the standard label should be used or if the labels are to be
omitted.

Disposition

Determines how the file is left when it is closed. If LEAVE is specified, when
the file is closed it is left at the position after the last READ or WRITE
operation. If REWIND is specified, when the file is closed it is positioned

at the beginning. '

Symb_Type

Specifies the symbiont type to which the text file is associated. This type
can be one of the following:

Type Description

SOF A sequential text file that can be written to, reset, and then read
from. This file may not be edited or printed (with SYM) on an
1100 printer. To print this file, a program must be written to
convert this text file to a symbiont file that may be editted or
printed (with SYM). See example below.

Read Usually associated with the standard read device READS. This
attribute is considered similar to the STD_IN file.

Alt_Read Similar to the read device but is not associated with the standard
read device READS.

Print Usually associated with the standard print device PRINTS. This
attribute is considered similar to the STD_QUT file.

Alt_Print Similar to the print device but is not associated with the standard
print device PRINTS.

Punch Usually associated with the standard punch device PUNCHS.

Ait_PunchSimilar to the punch device but is not associated with the
standard punch device PUNCHS.

A null string for the FORM specifies the use of the default options of the
implementation for the external file.

7830 7287-000

Implementation-Dependent Language Features

Example

The example procedure converts an SDF PCIOS text file into an SYMB file that may be
SYMed to a printer. The SDF PCIOS text contains a FF control character that causes
problems if used as input to other 1100/2200 processors. This program converts the FF
control character into the print control images that the other 1100/2200 processors
understand.

with TEXT_I0;
use TEXT_IO;

procedure CONVERT_SDF_TO_SYMB is

== This first file type is the text file that was used for regular
-- TEXT_IO processing without a FORM parameter,
SDF_FILE : FILE_TYPE;

-- This is the file that may be SYM'ed to a standard 1100/2200 printer
-~ or my be used in an editor.
SYMB_FILE : FILE_TYPE;

-- This is the variable that will be read from the SDF file and 'PUT'
-- into the SYMB file.
CHAR : CHARACTER := ' ';

begin -- CONVERT_SOF_TO_SYMB

-- First open the SDF text file for input.
OPEN(FILE => SDF_FILE,

MODE => IN_FILE,

NAME => “MYTEXTFILE");

-- Now create a SYMB text file to write the information from the SDF
-- file.
CREATE(FILE => SYMB_FILE,

MODE => QUT_FILE,

NAME => "SYMBFILE",

FORM => “SYMB_TYPE => ALT_PRINT");

-- Get the first character in the file.
GET (SDF__FI LE,CHAR);

-- Process the entire SDF_FILE until EOF is reached.
while not END_OF_FILE(SDF_FILE) loop

-- If the EOP is reached in the file, output a new page.

if END_OF_PAGE(SDF_FILE) then
NEW_PAGE (SYMB_FILE) ;

7830 7287-000 F-51

Implementation-Dependent Language Features

-~ If the EOL {s reached in the file, output a new line.
elsif END_OF_LINE(SDF_FILE) then
NEW_LINE(SYMB_FILE);

-- Output the character to the SYMB file.
else '
PUT(SYMB_FILE,CHAR);

end if;

-~ Get the next character in the file.
GET(SOF_FILE,CHAR);

end loop;

-~ Processing of the SOF file is finished. Both of the files may now
-- be closed.

CLOSE(SDF_FILE);

CLOSE(SYMB_FILE);

end CONVERT_SDF_TO_SYMB;

.

Using the FORM Parameter

The UCS Runtime System raises the exception USE_ERROR if the FORM string is not
correct or if a non-supported attribute for a given package is used.

An example of the FORM parameter (for DIRECT _I0) follows:

FORM=> “"Block_size => 3584, Record_size => 448, Append => True, " &
"Max_Rec_Num => 500, Skeletonize => True, Shared => True, " &
“Prep_Factor => 448, Labels => Omitted, Disposition => Rewind"

The FORM parameter must use named notation for each attribute. The qualifier is to
the left of the '=>". If the qualifier is omitted from the FORM string, the UCS Runtime
System raises the exception USE_ERROR.

Access Protection
The OS 1100 Executive (Exec) provides access protection of external files by means of

access control records (ACR). The system uses these records to define the privileges
that the owner of the file has granted to other users.

F-52 7830 7287-000

Implementation-Dependent Language Features

Files created by Ada programs have default protection values. It is the responsibility of
the user to see that any files that have been created with no access protection keys are
copied into files that have the level of protection desired, or that the system
administrator changes the attributes of the file created.

Another option is to use the system processor called the Site Management Complex
(SIMAN). This tool can redefine the security levels associated with files that are created
by executing UCS Ada programs.

Closing a File Explicitly

The UCS Runtime System uses the Processor Common Input/Output System (PCIOS)
to produce data files that are compatible between high-level processors, utilities, and
query systems, Programs access these common I/C modules through a UCS Runtime
System interface.

Additionally, a the UCS Runtime System epilogue performs a function that ensures that
all files (except STANDARD _INPUT and STANDARD OUTPUT) are closed at
program termination. The Ada standard does not define what happens when a program
terminates without closing all the opened files. Thus, a program that depends on this
support feature of the UCS Runtime System may have problems when ported to another
system.

If the execution of & program encounters a hard I/O device error, an exception is raised
and the UCS Runtime System epilogue attempts to close any files that are open.

However, all open files will remain open at program termination when the I/O device
experiences a hard error.

Limitations on Procedure RESET

An internal file opened for input can be reset for output; however, the contents of the
file may be deleted.

7830 7287-000 F-53

Implementation-Dependent Language Features

F.8.2. Input/Output Packages

The following table describes the implementation dependencies of the UCS Ada

input/output packages.
Ll
Package Dependency ;
SEQUENTIAL_IO Is target-independent, except for the FORM parameter. There are no
(Generic) implementation dependencies within the generic package
SEQUENTIAL_[O. '
DIRECT_IO Is target-independent, except for the FORM parameter. The following '
(Generic) defines all of the implementation-dependent items associated with the
generic package DIRECT_1O:
type COUNT is INTEGER range 0 .. 2**18 - 1;
TEXT_IO {s target independent, except for the FORM parameter.
The following defines all of the implementation-dependent items
associated with the TEXT_IO package:
type COUNT is INTEGER range 0 .. 2**18 - 1;
subtype FIELD is INTEGER range 0 .. 132;
LOW_LEVEL_IO The Ada standard outlines the package LOW_LEVEL_IO, which is

concerned with low-level machine-dependent input/output. This type of
input/output can be used, for example, to write to device drivers or
access device registers. The package LOW_LEVEL_|O is not
implemented in UCS Ada. You can, however, use interfaces to
subprograms written in the other UCS languages as an aiternative
method.

F.8.3. 10_EXCEPTIONS

UCS Ada implements IO_EXCEPTIONS as defined the Ada standard (see Section 14.5
of the UCS Ada Programming Reference Manual Volume 1). This package defines the

exceptions needed by the packages SEQUENTIAL_IO, DIRECT IO, and TEXT_}O.

F.8.4. 1/0 and Tasking

It is recommended that all of a program'’s I/O be done in one task. It is possible to do I/O
in more than one task as long as each task does I/O to a separate (it’s own) file. Ifa
program does not follow this convention, we cannot guarantee correct results or correct
order in the file for the program.

F.54

7830 7287-000

Implementation-Dependent Language Features

F.9.

F.9.1.

F.9.2.

Characteristics of Data Types

The following subsections describe the implementation dependencies of UCS Ada data

types.

Integer Types and Attributes

The ranges of values for integer types declared in package STANDARD are as follows:
type INTEGER is range -34 359 738 367 .. 34 359 738 367; -- 2**35-1

For the packages DIRECT IO and TEXT IO, the ranges of values for types COUNT
and POSITIVE_COUNT are as follows:

type COUNT is range 0 .. 262_143; -~ 2**18-1
type POSITIVE COUNT is range 1 .. COUNT'LAST; -- 2**18-1

For the package TEXT_IO, the range of values for the type FIELD is as follows:

subtype FIELD is INTEGER range 0 .. 132;

Floating-Point Types and Attributes

Type FLOAT
Attribute Exact Value Approximate Value
DIGITS 7
MANTISSA 25
EMAX 100
EPSILON 20724 5.96E-08
SMALL 2.0°101 3.94E-3]
LARGE 2.0100 %(1 0.2.025) 1.27E+30
SAFE_EMAX 127
SAFE_SMALL 2.07128 2.94E-39
SAFE_LARGE 2.0127 «(1,0.2.025 1.70E+38
FIRST -2.0327 +(1.0.2.0%7) -1.70E+38
LAST 2.0127 %(1.0.2.0%7) 1.70E+38
MACHINE_RADIX 2
MACHINE_MANTISSA 27
MACHINE_EMAX 127
MACHINE_EMIN .128
MACHINE_ROUNDS FALSE
MACHINE_OVERFLOWS TRUE
SIZE 36

78307287-000

F-55

L
e

Implémqntation-Dependent Language Features

7-56

Type LONG_FLOAT

Aftribute

DIGITS

MANTISSA

EMAX

EPSILON

SMALL

LARGE

SAFE_EMAX
SAFE_SMALL
SAFE_LARGE

FIRST

LAST
MACHINE_RADIX
MACHINE_MANTISSA
MACHINE EMAX
MACHINE EMIN
MACHINE_ROUNDS
MACHINE_OVERFLOWS
SIZE

Exact Value

17
58

232
2.0°%7

207233

2.0232 » (1.0-2.0°58,

2923024

2.01023 + (1 0.2.0-58)
-2,01023 « (1 0.2 0°60)
2.01023 + (1 0.2.0-60)
2

60

1023

-1024

FALSE

TRUE

72

Approximate Value

6.94£-18
7.24E.71
6.90E+69

5.56E-309
8.99E+307
-8.99E+307
8.99EE+307

7830 7287-000

Implementation-Dependent Language Features

F.9.3. Attributes of Type DURATION

type DURATION is delta 2.0°18 range -86_400.0 .. 86_400.0;

Attribute - Exact Value
DURATION'DELTA 2.0°18
DURATION'SMALL 2.0°18
DURATION'SAFE_LARGE 131071.9999
DURATION'FIRST -86400.0
DURATION'LAST 86400.0

F.9.4. Default Sizes and Alignments

The following table shows the defsult representation of non-composite data types in

UCS Ada.
Type Default Defautt Size clauses aliowed?
Size (bits) Alignment
Enumeration 36 word Yes. Must be between logical size and 36
Character 9 word Yes. Must be between logical size and 36
Boolean 9 word Yes. Must be between logical size and 36
Integer 36 word Yes. Must be between logical size and 36
Float 36 word Must be the default size
Long_Float 72 word Must be the default size
Fixed point 36 word Yes. Same as integer
Access 36 word Must be 36
Task 36 word Must be 36

7830 7287-000 F-57

Implementation-Dependent Language Features

F.10. Other Implementation-Dependent
Characteristics

The following table describes other miscellaneous implementation characterstics.

F-58

Characteristic

Description

Heap

Objects that have allocated space from the heap have the following common
charactetistics:

o All are part of collections that contain objects that are either fixed or
variable in their size
® All are associated with a scope.

The scope can be as broad as global or as limited as a specific routine. All
Ada data that is allocated via an allocator (NEW) is allocated on the heap.
In addition, the compiler may decide to allocate other data on the heap.

The source of storage for objects in a program is dependent upon the vaiue
of the compile-time constants STACK and DYNAMIC. The STACK and
DYNAMIC keyword options in UADA (see Table -) are available |

to modify the constraints on the static and dynamic stacks. By controlling
the size of the objects that are put on these stacks, you can indirectly control
which objects are put onto the heap.

The ADABND processor has a set of commands that are available to controt
the definition of the heap's initial size, maximum size, and increment size
during execution. These are described in .

Task

In UCS Ada level 1R1, there is a one-to-one correspondence of Ada tasks to
0S 1100 activities. See for a list of the ADABND processor
commands available to control task characteristics.

Exception

Because of the current interpretation of the Ada standard, code generated by
UCS Ada does not produce NUMERIC_ERROR exceptions. Instead, numeric
error cases such as overflow and divide by zero produce
CONSTRAINT_ERROR exceptions.

A NUMERIC_ERROR exception can only be generated by using the following
Ada statement:

RAISE NUMERIC_ERROR;

continued

7830 7287-000

Implementation-Dependent Language Features

continued

Characteristic

Description

Input/Output

All files created by an executing Ada program are compatible with the other
UCS languages. The different UCS languages can share YO files; however,

each language that calls a file must close it before another UCS langua
can access it. See Section for more information.

;

Main
Subprogram

Alibrary unit can be used as a main subprogram if and only if it is a
procedure that is not generic and has no formal parameters.

Compilation
Units

UCS Ada supports the instantiation of a generic compilation unit whose body

has not yet been compiled (see compiler option NO-GEN-INL in Table
3.

7830 7287-000

F-59

UCS Ada Tools

Table 6-1. ADAREFORMAT Keyword Options

Keyword Description
KEYALOWER (defauht) KEYAOWER converts all Ada keywords to lowercase.
KEYAUPPER

KEY/UPPER converts all Ada keywords lo uppercase.
if you do not specily this keyword, the default is KEYAOWER.

IDENT/UPPER (default)

IDENT/CAP IDENT/CAP capitalizes the first letter of each word in an identifier that uses
IDENT/KEEP underscores (For example, Gel_Nama). All other letters in the identifier are
IDENTAOWER lowercase,

IDENT/XEEP keeps ADAREFORMAT from converting the identifiers. All
of the identifiers in the source remain the same.

IDENTAOWER converts all of the identifiers in the Ada source to lowercase.
IDENT/UPPER converis all of the identifiers in the Ada source to uppercase.
If you do not specily this keyword, the default is INDENTAJPPER.

TAB/n

ADAREFORMAT usaes the the value of n as the number of space characiers
to indent the reformatted source. The value of n must be a positive integer
In the range 2 S nS 6. If you do not specity a value, the defauht

value of nis 3 spaces.

6.1.3.

6.1.2.

Using Pragma INDENT

This pragma effects the reformatting of the Ada source by the ADAREFORMAT
processor. It has no effect, however, on the compilation of a UCS Ada unit.

The format and definition of pragma INDENT are as follows:

pragma INDENT(ON) ~= Allows ADAREFORMAT to format the source
pragma INDENT(OFF) ~- [revents ADAREFORMAT from formatting the source

The OFF format inhibits any maxipulation of the Ada source by the ADAREFORMAT
processor preventing ADAREFORMAT from formatting all source following the
pragma. This continues until a pragma INDENT(ON) is encountered in the source,
which causes ADAREFORMAT to resume its normal reformatting actions in the
source after the pragma.

)

~NZ3anNT vwovaf >

To be supplied.

Sample of Reformatting Sou: g
-+

2

l

GEN-INL (default)

| Keyword Optlons for Program Control (cont.)

Description

) does not allow inline expansion of functions and subprogram calls.

iy SOURCE or the S'letter option, the listing generated
1 lines that are expanded.

n specifies the machine class on which the object module produced
iler executes. This overrides the default that is defined at the time
@ Support System (LSS) is installed.

one of the following valuss, depending on the machine:
ixtended mode machine

90 and 2200/600 system

200, 2200/300, and 22007400 system

spacilies thal the object module produced by the compiler executes
ine class defined at the time LSS was installed.

GEN-INL causes the compiler 1o place the code of a generic instantiation

NO-GEN-INST (default)

NO-GEN-INL within the compildtion unit that contains the instantiation (inline).
NO~GEN-INL causes the compiler to place the code of a generic instantiation
in a separate subunit. Use this option to manage the size of large
compilation units.

GEN-INST GEN-INST causes the compiler to instantiate a pending uncompiled generic

body whose template has been compiled or recompiled in another library
{specilied by the library field). See 5.1.2 for a discussion

of pending instantiation units.

initiate the instantiation with the iollpwing on the @UADA compiler call:

* Spacily the GEN-INST keyword option on the @UADA processor call

* Omit the source-program field and the l-option (thers is no source to process)

For example,

@UADA ,qual*library.,, GEN-INST

3-20

7830 7287-000

- : ?e%M%C.eQ

Section 9 " A??' F

Interlanguage Calls

Procedures written in other UCS languages (currently UCS C, UCS COBOL,
UCS FORTRAN, and UCS Pascal can be called from UCS Ada, as follows:
e All communication must occur by means of parameters and function results.

e You must include a pragma INTERFACE for each subprogram written in another
language.
e Calls from Ada to other UCS languages use the standard calling sequence (SCS).

e Other UCS languages cannot call Ada code. Therefore, an Ada application must
begin execution in an Ada main program.

e Other UCS languages cannot access Ada data, except through parameters passed
from Ada code. That is, there is no way to export Ada static global data.

However, differences among the languages for handling the following items require
certain restrictions on passing arguments:
e Data types
¢ Data alignments
¢ Data sizes
¢ Passing modes used by the languages

- Pass by value (PBV) .

The convention of passing a parameter value directly as an immediate value

In the UCS standard calling sequence (SCS), there are cases where the value
can be immediate if its size is two words or less. If the value to be passed is
greater than two words, the SCS always uses the pass-by-referer.ce-value
format.

~ Pass by reference (PBR)
The convention of passing the address of an object

This allows the called program to change the parameter, if the language
rules allow it.

7830 7267-000 -1

Texy

: angp'r!’anguagq Cails

- Pass by reference value (PBRV)
The convention where the compiler automatically copies an object to a
temporary variable and passes the address of the temporary varisble

: The calied program cannot change the value of the object, only the value of

¢ theeopy.Thismethodisundbyscswhenthevalueofthepanmetertobe
: pusedilgruterthantwowordsinsize(thntin,itdoesnotﬁtintoﬂxescs
packet as an immediate value).

~ Pass by copy (PBC)

The convention where the compiler automatically copies an object to a
temporary variable, passes the address of the temporary variable, and copics
the value of the temporary to the object on return

This allows the called program to change the parameter. Ada requires this
type of parameter passing for OUT and IN OUT scalars.

These items are discussed in subsections later in the section, which show UCS Ada
calling a particular language.

9-2 7830 7287-000

interlanguage Caiis

9.1,

9.1.1.

Using Pragma INTERFACE

You must include & pragma INTERFACE for each subprogram that is written in
another langusge and called from your Ada program. Pragma INTERFACE specifies
the name of an interfaced subprogram and the name of the programming language for
which parameter passing conventions must be generated.

Format
pragma INTERFACE(language_name, sulzprogmn_nane) :

where:

language_name
is one of the UCS languages (UC, UCOB, UFTN, UPAS). These UCS languages

use the §tandaxd calling sequence (SCS) for external interfaces.

subprogram_name
is the name by which the Ada program references the external subprogram.

If subprogram_name differs from the external name of the interfaced subprogram, you
can associate subprogram_name with the external name by specifying pragma
INTERFACE_NAME (see 9.1.1) in conjunction with pragma INTERFACE.

When using pragma INTERFACE, case sensitivity of the different UCS languages
makes the following items important:

e The compiler internally converts all lowercase letters in identifiers (such as
subprogram_name) to uppercase

¢ External names generated by UCS C are case sensitive, while those generated by
other UCS languages are not

Therefore, you must use pragma INTERFACE_NAME if the external name of a
subprogram generated by UCS C contains lowercase characters. See 9.1.2 for
examples of using pragma INTERFACE as well as pragma INTERFACE_NAME.

Using Pragma INTERFACE__NAME
Use this pragma with pragma INTERFACE when the Ada name of the subprogram
that the program calls is not identical to the external subprogram name. This pragma

associates the two names,

Format
pragma INTERFACE_NAME(oda_subprogram_name, external_language_name);

where:

ada_subprogram_name
specifies the name of the subprogram as defined in the Ada program.

7830 7287-000 8-3

~ Inferianguage Calls

9.1.2.

external_Janguage_naome ,
is a string literal (surrounded by quotes) that specifies the name of the
subprogram as defined in the external program. The specified name of a UCS C
routine must identically match the external C name (this includes the use of
lowercase letters). External names for all of the other UCS languages must be

uppercase.

You can use pragma INTERFACE_NAME to identify routines in other languages that
are not named with legal Ada identifiers. Ads identifiers can only contain letters,
digits, or underscores, whereas the Linking System allows external names to contain
other characters such as the dollar sign ($). These characters can be specified as the
external_language_name argument of the Ada subprogram.

Pragma INTERFACE_NAME is allowed at the same places of an Ada program as
pragma INTERFACE (see the UCS Ada Programming Reference Manual Volume 1).
However, pragma INTERFACE_NAME must always occur immediately after the
pragma INTERFACE declaration of the interfaced subprogram.

Examples

Example 1

The following code shows the declaration of a UCS COBOL subprogram, externally
named SAMPLE, that an Ada program calls. The name of the external subprogram is
also SAMPLE, so pragma INTERFACE_NAME is not used in the declaration.

procedure SAMPLE(I : INTEGER);
pragma INTERFACE(UCOB,SAMPLE);

Example 2

The following code shows an interfaced subprogram specification. The addition of
pragma INTERFACE_NAME declares that the UCS FORTRAN routine with external
name GETNAM is referenced in the UCS Ada program as procedure GET_NAME,

procedure GET _NAME(I : INTEGER);

pragma INTERFACE(UFTN,GET_NAME) ;
pragma INTERFACE_NAME (GET_NAME,®GETNAM®);

7830 7287-000

interianguage Caiis

R T e
LY + A

Example 3 '

The following code shows a subprogram specification for a UCS C subprogram. The
addition of pragma INTERFACE_NAME declares that the UCS C routine with
external name test is referenced in the UCS Ada program as procedure TEST.

procedure TEST(I : INTEGER);
pragma INTERFACE(UC,TEST);
pragma INTERFACE_NAME(TEST,"test®);

Note: If pragma INTERFACE_NAME is not used when calling UCS C subprograms,
the imported name of the UCS C subprogram uses all uppercase characters.

7830 7287-000

85

interianguage Calls

9.2,

Restrictions on Calling UCS Languages

The following subsections describe the interfaces to subprograms written in other
UCS languages. Each language has specific interface rules. However, the following
list contains general rules for calling other languages from Ada code:

You must be aware of storage sizes and alignment differences in the called
language. In some cases, you must use a representation clsuse to properly size
and align the data to the exact formatrequired. This is especially true for Ada
composite types (array and record) and data referenced by Ada access types. You
may have to examine the allocation listings produced by the UCS languages

to determine the exact layout specifications.

Alignment of parameter and function result data is as follows:
- Scalars, including the predefined type character, are right-justified.
- Composites, such as arrays, strings, and records, are left-justified.

If the actual parameter is not aligned on a word boundary, the compiler generates
code to move it to a temporary variable. In addition, if the size of the actual
parameter does not match the size of the Ada formal parameter, the actual
parameter is moved to a temporary variable.

You must ensure that an Ada scalar formal parameter whose size is not a
multiple of 36 hits matches the alignment of the formal parameter in the other
language. For example, if the Ada scalar formal parameter is a 9-bit integer type,
you must ensure it is passed in a way that is expected by the called language.

One way to avoid problems is to declare an interface scalar forraal parameter
in both Ada and the called language as a multiple of 36 bits.

A character data item is considered to be a scalar (similar to an integer) whose
value is right-justified.

Function result types that are Ada arrays, including strings, and records must be
constrained.

Parameter types need not be constrained. However, for unconstrained parameter

types, no descriptor information is passed to tl:e calling program that describes
the parameter, as is done for noninterface calls.

When passing Ada records, you must account for the internal format of
discriminants and compiler-generated record components. In addition, you may
have to use pragma IMPROVE (see F.1.2) in some cases to eiiminate internal
fields in records. You can use an Ada representation clanse to designate record
formats.

The index types of Ada arrays must be mapped properly onto the index types of
the called program. For example, FORTRAN array indexes are integers. Arrays
are always PBR or PBRV.

Note: FORTRAN arrays are stored in column-major order, while Ada stores
arrays in row-major order.

7830 7287-000

interianguage Calis

7830 7287-000

The values for enumeration literals in Ada enumeration types must be mapped
properly onto the values expected by the called program. You can use an Ada
representation clause to designate enumeration values.

The formal parameter type must match the actual parameter type. For example,
if you pass an Ada enumeration variable to a FORTRAN INTEGER variable
(since FORTRAN has no enumeration type), the Ada formal and actual
parameter types must be enumeration.

Ada access variables point only tq word-aligned objects. That is, there is no bit
offset in the pointer.)

To get an 1100 extended mode virtual address (VA) in an Ada access variable,
include the following specification on the access type (otherwise, the access
variable contains a heap bank offset):

PRAGMA NON_ADA_ACCESS

Use the pragma in cases where an access variable parameter is passed to another
language that expects a VA

Note: A heap bank offset has no meaning for any other high-level language called.
Another way to pass a virtual address (VA) on an interface call, other than with
pragma INTERFACE (UC), is the following:

~ Declare the Ada formal parameter as an integer.

~ Pass object’ ADDRESS as the actual parameter, where object is the variable
whose address is passed.

You can pass an object with an Ada private type; the actual type of the object is
used.

You cannot pass Ada fixed-point or task types on any pragma INTERFACE call.
You cannot pass subprogram names as parameters.
You should not pass null records, arrays, or strings as parameters.

In many cases, the compiler copies parameter data to a word-aligned temporary
variable. When necessary, it also copies the temporary variable back to the
original variable.

If the non-Ada subprogram is a function, its value is returned to Ada by standard
calling sequence (SCS) conventions. The compiler then implicitly converts the
returned value to the Ada calling sequence (ACS) format.

Ada does not allow a function to have OUT or IN OUT parameters. However,
this is implicitly allowed in other languages.

- One way to handle this problem is to have the Ada program call a procedure
in the other language, which then calls the desired function in that language.
The procedure has an extra OUT parameter to contain the function resuit.

9-7

R Interlanguage Calis

Example
Ada declarations:

. X1: INTEGER;

XZ: INTEGER;

E prosedure P(M: out INTEGER;
I: out INTEGER)

pragma INTERFACE(UFTN,P);

Ada call:

P(X1,X2)3
«= X1 is the FORTRAN function result.
«= X2 is the OUT parameter whose value was changed in the function.

FORTRAN subroutine, which calls the function:

subroutine P(M,I)
M= N(I)

return

end

FORTRAN function:

function N{J)
J= ..,

N= ...
return

end

- Another way to handle the problem in certain interface langusgzes is o pass
a pointer as an IN parameter to the function, then use the pointar in the
called program to change the data.

o Ada does not use the compile-time service routine to pass parameters, since this
feature pertains only to certain UCS languages.

¢ An l/O file can be shared between different UCS languages, but it must be closed
by the language that opened it before it can be accessed by the other langusge.

s-8 7830 7287000

Interlanguage Calls

'9.3. Calling Other UCS Languages from UCS
Ada

Subsections 9.3.1 through 9.6 each contain a table that lists Ada data types and the
corresponding types of the other language, if any. Codes in the table identify the
possible relations between corresponding types, as follows:

7830 7287000

Y

The type is allowed with no nst;ict:ions.
N

The type is not allowed.

YL

The type is allowed, but the data item must have the proper storage-layout
(alignment and size) required by the called program, including alignment and
exact data size for Ada composites. You can use an Ada representation clause,
if necessary, for an Ada record.

YT
The argument can be passed, but o.e of the following is true:

- Ada does not have a type that directly corresponds to the type of the called
language.

-~ The called language does not have a type that directly corresponds to the
Ada type.

You are responsible for setting up the proper layout and values expected by the
called program. For example,

~ The COMPLEX type in FORTRAN can be represented in Ada as a record.

- The enumeration type in Ada can be represented in FORTRAN as an
integer.

You can use an Ada representation clause, if necessary.
w

The type is allowed, but the value passed (such as the value for an enumeration
ty pe) must be in the range of values required oy the called program. You can use
an Ada representation clause, if necessary.

YP

The pointer (one word in length) can be passed. However, if an Ada access value
is passed to a pointer in another language, you must include the following
specification on the access type:

PRAGMA NOR_ADA ACCESS

This allows you to get the virtual address (VA) format of the pointer.

99

" Interlanguage Calls

g-10

Another way to pass a virtual address (VA) on an interface call is the following:
= Declare the Ada formal parameter as an integer.

-~ Pass object’ADDRESS as the actual parameter, where object is the variable
whose address is passed.

The format parameter in the called language can then be a pointer type.

WD X,

The type is allowe, but size of the object must be word (36 bits). You can use an
Ada representation clause, if necessary.

2WD

The type is allowed, but size of the object must be double word (72 bits). You can
use an Ada representation clause, if necessary.

4WD

The type is ellowed, but size of the object must be quadruple word (144 bits). You
can use an Ada representation clause, if necessary.

Any special considerations of which you need to be aware when calling another UCS
language from UCS Ada are listed after the data type table for each language. These
considerations are in addition to the general set of restrictions listed in 9.2.

" 7830 7:287-000

UCS Ada Calling UCS C

9.3.1. UCS Ada Calling UCS C
Table 9-1 lists the data types defined by Ada and indicates the corresponding C data

type, if any.
Table 9-1. Adavs C Data Types and Attributes
Ada Actuat Argument * C Parameter Relation
integer int YL **°
signed int
long
long int
signed long
signed fong int
float float WD
long_float double 2WD
long double
access pointer wo
’ snumeration int YL, YV
~ boolesn int YL, YT
character int YL
string string Yo"
amay army Y
record struct 0 {8
Legend

Y Argument type allowed with no restrictions,

N Argument type not allowed.
WO Size is word.
2WD Slae is doudle word.

YU Agument type allowed, but data item must hava proper storage layout.
Argument can be passed, but type may not exist in one of the languages and must be handled

within called program.

i

YV Argument type allowed, but value passed must be within tange required by called program.

* Ada implicitly converis the Ada pointer 10 a two-word C pointer. Arrays, inciuding strings, ate
passed as C pointers, as are OUT and IN OUT parameters. Note that UCS Ada does not
convert an expression of the form objectADDRESS 1o a C pointer.

** You must insert the lerminating null character into the Ada code.

*** For a C function in traditional format, you can use types less than one word in length (see Table

9-2.

7830 7287-000

9-11

Y

'UCS Ada Calling UCS C

912

You should be aware of the following considerations when calling a C program from an
Ada program:

Ada prograins can vass parameters to a C function by value or reference, as
follows:

- IN parameters that are scalars (including char objects, which are treated as
integers) and small records (less than or equal to two words) are always
passed to UCS C by value. .

-~ OUT and IN OUT parameters that are scalars and small records (less than
or equal to two words) are always passed to UCS C by reference. The
parameter on the UJCS C side should be a pointar (using the * syntax) in this
case,

- Large records (greater than two words) passed to C structures are always
passed by reference. The corresponding C parameter is declared as a
structure (struct). -

- Arrays (including strings) are passed by reference.
- Any reference parameter is passed via a C pointer.

Since the main program is not a C program, the standard C files stdin, stdout,
and stderr will not be open. See the UCS C Programming Reference Manual
Volume 1 for information on opening the standard C files.

The called C subprogram cannot have a variable parameter list (a variable
number of parameters).

A pointer in C has a special two-word format. The compiler implicitly converts an
access valu2 passed to C to that two-word format.

Note: Only a C pointer to data is supported in an interface call from Ada to C.
A C pointer to a subprogram, which is contained in an eight-word
structure, is not supported.

The C convention for indicating the end of a ¢haracter string (which C maintains
as a single-dimension array) is to use a null character, which is a byte containing
all zeros. C string functions, as well as the %s format descriptor, require the
NULL character to terminate the string.

If an Ada program passes a character string to a C function, it must insert a null
character in the appropriate place in the string. If an Ada program receives a
character string from a C program, the Ada program should consider the length
of the string to be the length of the text preceding the null character in the string,
not the declared length of the string.

Examples 9-1 and 9-2 demonstrate how Ada can handle C strings.

If parameter data is modified in the called C subprogram, the Ada program
should pass either of the following:

~ Access value pointing to the data

7830 7287-000

‘LR
g7

LY

UCS Ada CallingUCS C

- OUTor IN OUT parameters

e Casting methods (casting a pointer to an integer or an integer to a pointer) for
passing rarameters to UCS C are not required.

e The called C function should use the prototype format. However, note the
following considerations about the format used:

~ Traditional format treats integral data types that are not one word in length
as type int (that is, as one-v(grd, right-justified entities), as follows:

Table 9-2. Two-Word Data Types That Are Treated as One-Word

C Data Type Slze

short 18 bits

shodt int

signed shont

signed short int

enum 18 bits, uniess the values do not fit; otherwise
36 bits

char 9 bits

unsigned char

Ada can pass one-word items, (such as integer, enumeration, and character)
to these C types in traditional format.

For functions in prototype format, use int instead of any of these types to
declare formal parameters.

- Traditional format treats type f10at like type double (that is, like a two-word
item). In prototype format, type float is one word in lengtk.

- Traditional format does not affect the processing of nonscalar parameters,

such as records (that is, struct in C).
- Do not mix prototype and traditional formats in a C function.
Example

This example demonstzates a call from an Ada main program to a C subprogram, with
the following actions by the main program and subprogram:

¢ The Ada main program initializes an integer scalar, string, and a two-
dimensional integer array. Each element of the array is initialized with its
ordinal value in column-major order.

¢ The contents of the Ada data items are displayed to verify initialization.

¢ The Ada main program calls the C subprogram, passing the three data items as
actual arguments.

7830 7287-000 ' g-13

UCS Ada Calling UCS C

g-14

o The C subprogram displays the ineoming paramaters to demonstrate that the
parameters were received correctly and that the subprogram intarprets them
correctly.

e The subprogram updates the contants of the dummy arguments and returns
control to the main program. The changes to the string and scalar integer
arguments are straightforward. The array is updated by adding the value of the
ordinal position of each element to the current contents of each element.
Therefore, when the contents of the array are again displayed in the Ads main
program, the value of each element should be double the original value.

e The main program again displays the contents of the arguments to verify that the
C subprogram updated them correctly.

Figure 9-1 shows the output from executing this program.

7830 7287-000

ST

VR

TR

UCS Ada Calling UCS C

-- This Ada main program calls a C subprogram.

with TEXT_10;

procedure CALL C is

1, J : INTEGER; .

subtype STR_TYPE is STRING (1..12);
C & STR_TYPE;

type ARR_TYPE is array (1 ..4,1..3) of INTEGER;
A : ARR_TYPE;

procedure CSUB (I1 : in out INTEGER;
Cl1 : in out STR_TYPE;
Al : in out ARR_TYPE);
pragma INTERFACE (UC, CSUB);

package INT_IO is new TEXT_I0. INTEGER_IO (INTEGER) ;

begin

7830 7287-000

TEXT_I0.PUV_LINE (** In Ada main program).
-- Intialize and print variables

1 := 123;

TEXT_I0.PUT (* I = *);
INT_I0.PUT (1);
TEXT_I0.NEW_LINE;

C s "* Ada* "5
TEXT_10.PUT (* € = *);
TEXT_10.PUT_LINE (C)}

TEXT_10.PUT_LINE (*As=");
J s’ 1;
for 11 in 1 .. 4 loop
for I2in 1 .. 3 loop
A (11, I2) := J;
INT_IC.PUT (A (11, 12)):
J s J +1;
end 1o0p;
TEXT_IO.NEW_LINE;
end loop;

-- Call UC

9-15

A

g-16

" . UCS AdaCalling UCS C

csus (I, C, A);
«- Print variables on return from UC

TEXT_I0.NEW_LINE;

TEXT_10.PUT_LINE (*~ Back in Ada main program wye

TEXT_10.PUT (" 1= *);
INT_10.PUT (1); .
TEXT_10.NEW_LINE;

TEXT_10.PUT (* C = *);
TEXT_10.PUT_LINE (C);

TEXT_I0.PUT_LINE (" A = “);

J =1

for 11 in 1 .. 4 loop
for 12 in 1 .. 3 loop

INT_10.PUT (A (13, 12));

end loop;
TEXT_10.NEW_LINE;

end loop;

end CALL C;

Example 9-1. UCS Ada Main Program to Call UCS C Subprogram

7830 7287-000

UCS Ada Calilng UCS C

#include <stdio.h>
finclude <string.h>

void CSUB(int *iparm, char *cparm, int (*aparm)[4](3])
{
FILE =outfile ;

inti, 3

outfile = fopen(*/dev/tty","w") ;
fprintf{outfile,* \n*) ;
fprintf(outfile,"* In C subprogram * \n*) ;
fprintf(outfile,” iparm = %d\n", *iparm) ;
fprintf{outfile," cparm = &s\n*, cparm) ;
fprintf(outfile,* *aparm = \n") ;

for (i=0; i<d; {++)

fprintf(outfile,” ‘)
for (j=0; j<3; j+)
fprintf(outfile,*sd *,(*aparm) [1][j]) ;
fprintf(outfile,*\n*) ;
}

fclose(outfile) ;

*iparm = 456 ;
strepy(cparm,** C *)

for (i=0; i<4; {++)
for (j=0; j<3; j+)
(*aparm) [11(§] = (vaparm)(i](J] + (§+1) + (i*3) ;

Example 9-2. UCS C Subprogram Called from UCS Ada Main Program

7830 7287-000 917

UCS Ada Calling UCS C

* In Ada main program *

is 123
C=*Ada"*
As
1 2 3
4 5 6,
7 8 9
10 11 12
* In C subprogram *
iparm = 123
cparm = * Ada *
aparm =
12
4 5 &
7 8 9
100 11 12
* Back in Ada main program *
I 456
Ca2*C*
As
2 4 6
8 10 12
14 16 18
20 22 24

Figure 9-1. Output of UCS Ada Program Calling UCS C Subprogram

8-18 7830 7287000

.

PN

e

UCS Ada Calling UCS COBOL

9.4. UCS Ada Calling UCS COBOL

Table 9-3 lists the data types defined by Ada and indicates the corresponding COBOL

data type, if any.

Table 9-3. Adavs COBOL Data Types and Attributes

Ada Actual Argument . COBOL Argument Relation
integer binary YL
float comp-1 wD

computational-1
long_float comp~2 2WD
' computational-2
access (none) N
enumeration binary YL Y7
boolean binary YL YT
character binary YL
stting disp Y
display
array oceurs YL
tecord record YL
Legend

Y Argument type allowsd with no restrictions.

N Argument type not allowed.

WD Size s word.
2WD Size is double word,

YL Argument type allowed, but data item must have proper storage layout.
YT Argument can be passed, but typs may not exist in cne of the languages and must be handied

within called program.

7830 7287-000

.

91§

-

9-20

-UCS Ada Caliing UCS COBOL

You should be aware of the following considerations when calling a COBOL program
from an Ada program:

Ada passes parameters to COBOL by reference (PBR).

Ada output to the standard print file operates in the reverse order of the COBOL
DISPLAY statement. Ada performs a line feed and then writes the items in the
output list. By default, the COBOL DISPLAY statement first writes the items
in the output list and then performs a line feed. Therefore, if an Ada program
outputs a line and then calls a COBOL program that uses a DISPLAY statement
to output the next line, the COBOL program must output an initial blank line to
avoid overwriting the Ada line. The example at the end of this subsection
demonstrates this consideration.

COBOL identifiers are limited to a length of 30 characters. They cannot contain
an underscore (_) or a dollar sign ($).

A COBOL subprogram cannot be invoked as a function because the concept of a
function does not exist in the COBOL language.

Example

This example demonstrates a call from an Ada main program to a COBOL
subprogram, with the following actions by the main program and subprogram:

The Ada main program initializes an integer scalar, a string, and a two-
dimensional integer array. Each element of the array is initialized with its
ordinal value in column-major order.

The contents of the Ada data items are displayed to verify initialization.

The Ada main program calls the COBOL subprogram, passing the three data
items as actusal arguments.

The COBOL subprogram displays the incoming dummy arguments
to demonstrate that the dummy arguments were received correctly and that the

subprogram interprets them correctly.

The subprogram updates the contents of the dummy arguments and returns
control to the main program. The changes to the string and integer scalar
arguments are straightforward. The array is updated by adding the value of the
ordinal position of each element to the current contents of each element.
Therefore, when the contents of the array are displayed again in the Ada main
program, the value of each element should be double the original value.

The main program agein displays the contants of the arguments to verify that the
COBOL subprogram updated them correctly.

Figure 9-2 shows the output from executing this program.

7830 7287-000

UCS Ada Calling UCS COBOL

-- This Ada main program calls a COBOL subprogram.

with TEXT_I0;

procedure CALLCOB is

1, J : INTEGER;

subtype STR_TYPE is STRING (1 .. 12);
C : STR_TYPE;

type ARR_TYPE is array (1 .. 4, 1 .. 3) of INTEGER;
A : ARR_TYPE;

procedure COBSUB (I1 : in out INTEGER;
€1 : in out STR_TYPE;
Al : in out ARR_TYPE);
pragma INTERFACE (UCOB, COBSUB) 3

package INT_IO §s new TEXT_10.INTEGER 10 (INTEGER);

begin

7830 7287-000

TEXT_I0.PUT_LINE (** In Ada main program)3
-- Intialize and print variables

1 := 123;

TEXT_10.PUT (*1=");
INT_IO.PUT (1)s
TEXT_IO.NEH_LINE;

C := "* Ada * *s
TEXT_10.PUT (* C = *);
TEXT__IO.PUT_UNE (¢}

TEXT_10.PUT_LINE (" A=*);
J = 1;
for I1in 1 .. 4 Toop
for I2 in 1 .. 3 loop
A (11, 12) := J;
INT_10.PUT (A (11, 12));
J s J+1;
end locp;
TEXT_IO.NEW_LINE;
end loop;

-- Call UcoB

9-21

-

‘UGS Ada Caliing UCS COBOL

: . coesuB (I, C, A)s
-- Print variables on return from UCOB

TEXT_10.NEW_LINE;
TEXT_10.PUT_LINE (** Back in Ada main program **);

TEXT_10.PUT (* 1 = °);
INT_10.PUT (I); -
TEXT_10.NEW_LINE;

TEXT_I0.PUT (* C = *);
TEXT_10.PUT_LINE (C);

TEXT_IO'PUT_LINE "A=")

J = 13

for I1 in 1 .. 4 loop
for 12 in 1 .. 3 loop

INT_10,PUT (A (11, 12))3

end loop;
TEXT_IO.NEH_LINE;

end loop;

end CALLCOB;

Example 9-3. UCS Ada Main Program to Call UCS COBOL Subprogram

9-22 ' 7839 7287-000

e AL T
PN B

UCS Ada Calling UCS COBOL

IDENTIFICATION DIVISION.
PROGRAM-1D.

COBSUB.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. UNISYS-2200.
OBJECT-COMPUTER. UNISYS-2200.
SPECIAL-NAMES.

PRINTER IS PRT.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 i PIC 9(10) BINARY.
01 j PIC 9(10) BINARY.
LINKAGE SECTION.
01 parsl PIC $9(10) USAGE BINARY.
0l parm2 PIC X(12) USAGE OISPLAY.
01 workrec3.

02 row OCCURS 4 TIMES.

03 col PIC S9(10) USAGE BINARY OCCURS 3 TIMES,

PROCEDURE DIVISION USING parml, parm2, workrecd.
BEGIN,

DISPLAY ' ',

DISPLAY ' .

DISPLAY '* In COBOL subprogram *'.
DISPLAY ! Parml = ' parml.

DISPLAY ' Parm2 = ' pamz2,
DISPLAY ' Parm3 = ',
PERFORM VARYING i FROM 1 BY 1 UNTIL i > 4
DISPLAY ' ' eol (i, 1) colfi, 2) col (i, 3)
END-PERFORM.

MOVE 456 TO parml.
MOVE ‘% COBOL *' TO parme.
PERFORM VARYING { FROM 1 BY 1 UNTIL i > 4
PERFORM VARYING j FROM 1 BY 1 UNTIL § >3
COMPUTE col (i, J) » col(i, J) +J ¢ (3 -1) *3)
END-PERFORM
END-PERFORM.

7830 7287-000

Example 9-4. UCS COBOL Subprogram Called from UCS Ada Main Program

UCS Ada Calling UCS COBOL

* In Ada main program *

Is 123

C=*Ada*

As
1 2 3
4) 6
7 8 9=
10 11 12

* In COBOL subprogram *

Parml = +0000000123

Parm2 = * Ada *

Parm3 =
+0000000001+0000000002+0000000003
+0000000004+0000000005+0000000006
+0000000007+0000000008 +0000000009
+0000000010+0000000011+0000000012

* Back in Ada main program *

1= 456

C = ~ COROL *

A=
2 4 6
8 10 12
14 16 18
20 22 24

et

Figure 9-2. Output of UCS Ada Program Calling UCS COBOL Subprogram

9-24

7830 7287000

N

«

w.

UCS Ada Calling UCS FORTRAN

9.5. UCS Ada Calling UCS FORTRAN

Table 9-4 lists the data types defined by Ada and indicates the corresponding

FORTRAN data type, if any.
Table 9-4. Ada vs FORTRAN Data Types and Attributes
Ada Actual Argument .FORTRAN Argument Relation
integer integer wD
float real WD
long_float double precision 2WD
access {none) N
snumeration integer WD, YT
boolean logical WD
character integer wD
string character Yy
array array YL
record {none) Y7
Legend

Y Argument type allowed with no restrictions.

N Argument type not allowsed.

WD Size Is word,

2WD Size is double word.

YL Argument type aliowed, but data iHem must have proper storage layout,

YT Argument can be passed, but type may not exist in one of the languages and must be handled

within called program.

* The character length in the SCS parameter packet (thitd word) is aiways zero. Therefore, the

FORTRAN formal parameter cannot be declared as CHARACTER'(").

7830 7287-000

9-25

UCS Ada Calling UCS FORTRAN

You should be aware of the following considerations when calling a FORTRAN
program from an Ada program:

Ada passes parameters to UCS FORTRAN by reference (PBR).
A UCS FORTRAN function called from UCS Ada cannot be of COMPLEX*16.

UCS FORTRAN arrays are allocated storage in column-major order. UCS Ada
allccates arrays in row-major order. If an Ads array is passed as an argument

to UCS FORTRAN, the FORTRAN program must declare and reference the array
with the array subscripts in reverse order as compared to the array in Ada. In
addition, the UCS FORTRAN array formal parameter must be in contiguous
storage,

Example

This example demonstrates a call from an Ada main program to a FORTRAN
subprogram, with the following actions by the main program and subprogram:

The Ada main program initializes an integer scalar, a string, and a two-
dimensional integer array. Each slement of the array is initialized with its
ordinal value in column-major order.

The contents of the Ada data items sre displayed to verify initialization.

The Ada main program calls the FORTRAN subprogram, passing the three data
items as actual arguments.

The FORTRAN subprogram displays the incoming dummy arguments

to demonstrate that the dummy arguments were received correctly and that the
subprogram interprats them correctly. Note that the order of the array bounds is
reversed from the Ada program.

The subprogram updates the contents of the dummy arguments and returns
control to the main program. The changes to the string and scalar integer
arguments are straightforward. The array is updated by adding the value of the
ordinal position of each element to the current contents of each element.
Therefore, when the contents of the array are displayed again in the Ada main
program, the value of each element should be double the original value.

The main program again displays the contents of the arguments to verify that the
FORTRAN subprogram updated them correctly.

Figure 9-3 shows the output from executing this program.

9-26

7830 7287-000

R

o<
. ws

UCS Ada Calling UCS FORTRAN

.- This Ada main program calls a FORTRAN subprogram.

with TEXT_I0;

procedure CALLFOR is

1, J : INTEGER; -

subtype STR_TYPE is STRING (1..12);
C : STR_TYPE;

type ARR_TYPE is array (1..4,1..3)0f INTEGER;
A : ARR_TYPE;

procedure FORSUB (I1 : in out INTEGER;
€1 : in out STR_TYPE;
Al : in out ARR_TYPE);
pragma INTERFACE (UFTN, FORSUB);

package INT_IO is new TEXT_IO.INTEGER 10 (INTEGER);

begin

7830 7287000

TEXT_IO.PUT~LINE (** In Ada main program w).
-~ Intialize and print variables

I = 123,

TEXT_10.PUT (" 1 = *):
INT_IO.PUT (1)
TEXT_10.NEW_LINE;

C = **Ada* *3
TEXT_10.PUT (" C = *);
TEXT_10.PUT_LIKE (C);

TEXT_10.PUT_LINE (*As=");
J = 13
for 11 in 1 .. 4 loop
for 12 in1 .. 3 loop
A (11, 12) := J;
INT_I10.PUT (A (11, 12));
Ji=J+ 1y
end loop;
TEXT_10.NEW_LINE;
end loop;

-- Call UFTN

$-27

A'\f;_, R

PR

* -UCS Ada Calling UCS FORTRAN

g-28

FORSUB (I, C, A);
== Print variables on return from UFTN

TEXT_10.NEW_LINE;
TEXT_I0.PUT_LINE ("* Back in Ada main program **);

TEXT_IO.PUT (* I = *); .
INT_TO.PUT (I); '
TEXT_10.NEW_LINE;

TEXT_I0.PUT (* C = *);
TEXT_10.PUT_LINE (C);

TEXT_10.PUT_LINE (* A = *);

J =13

for 11 in 1 .. 4 Yoop
for I2in 1l .. 3 loop

INT_I0.PUT (A (11, I2));

end loop;
TEXT_I0.NEW_LINE;

end loop;

end CALLFOR;

Example 9-5. UCS Ada Main Program to Call UCS FORTRAN Subprogram

7830 7287-000

MY

UCS Ada Calling UCS FORTRAN

10

20

\

subroutine forsub(i,c,a)
integer §

character*l? ¢

integer a{3,4)

‘* In FORTRAN subprogram * '
] I".f

] c-a.c

t A

print =,
print *,
print *,
print *,
print *,

DO 10 j1 = 1,4
print *, (a(j2,31), 32 = 1,3)

i = 456
€ = '* FORTRAN *'

00 20 j1 = 1,4
00 20 j2 = 1,3
a(32,31) = a(32,31) + j2 + (31-1)*3

return
end

Example 9-6. UCS FORTRAN Subprogram Called from UCS Ada Main Program

7830 7287-000

9-29

4 ~—

Y 4

5 =

© UCS Ada Calling UCS FORTRAN

* In Ada main program *
1= - 123
' C=*Ada"
A=
1 2
4 5
7 8
10 11
* In FORTRAN subprogram *
1= 123
Cs* Ada ™
As
1 2
4 5
7 8
10 11
* Back in Ada main program *
I = A56
C = * FORTRAN *
As
2 4
8 10
14 16
20 22

N O oW

12
18
24

9-30

Figure 9-3. Output of UCS Ada Program Calling UCS FORTRAN Subprogram

7830 7287-0C0

PAN e e

\:)

UCS Ada Calling UCS Pascal

9.6. UCS Ada Calling UCS Pascal

Table 9-5 lists the data types defined by Ada and indicates the corresponding Pasca)

data type, if any.
Table 9-5. Ada vs Pascal Data Types and Attributes
Ads Actual Argument . Pascal Argument Relation

integer {IN) integer Yt
integer (QUT,IN OUT) integer (VAR) YL
float (IN) real WD
float (OUT,IN OUT) real (VAR) wD
long_float (IN) (none) 2w, YT
long_float (OUT,IN OUT) {none) (VAR) 2WD, YT
access (IN) pointer YP
access (OUT,IN OUT) pointer {VAR) YP
enumeration {IN) enumeraied YL, YV
enumeration (OUT,IN OUT) snumetated (VAR) YL, YV
boolean {IN) boolean YL
boolean (OUT IN OUT) boolsan (VAR) YL
character {IN) integer YL
character (OUT,IN OUT) integer (VAR) YL
string siring Y
array amay YL
record record A (8

Lagend

Y Argument type allowed with no restrictions.

N Argument type nol allowed.

WD Size is word.
2WD Size is double word.

YL
Yp
YT

v

Argument type aliowsd, but data item must have proper storage layout,
Pointer can be passed, but Ada access typs needs pragma specification.

Argument can be passed, but type may not exist in one of the languages and must be handled

within called program.

Argument type allowed, but value passed must be within range required by caliad program.

7830 7287-000

$-31

3 UCS Ada Calling UCS Pascal

You should be aware of the followmg considerations when calling a Paseal program
from an Ada program:

o Ada passes arguments to Pascal by value (PRV), which is the default, or by
reference (PBR). To pass by reference, the Pascal formal parametar declaration
must include the keyword VAR.

Any IN scalar parameter is treated as PBV, and any OUT or IN OUT scalar
parameter is treated as PBR. Therefore, always match a Pascal variable (VAR)
parameter with an Ada OUT or IN OUT parameter.

e Ifdata is modified in the Pascal subprogram, the Ada program should pass either
of the following:
- Access value pointing to the data
~ PBR parameter (OUT or IN OUT)

¢ Since the Pascal subprogram is being called from a program written in another
language, the Pascal subprogram cannot use external files (including the
standard files INPUT and OUTPUT), because external files must be declared
in the main program and cannot be passed as arguments between these two

languages. The example at the end of this subsaction demonstrates this
consideration. The Pascal subprogram does no input or output.

o Ifan Ada character string is passed to a Pascal variable-length string, the Ada
program is responsible for simulating the internal representation of the Pascal
variable-length string, which consists of the following parts:
~ First word, which contains the size in bits of the string
= Rest of the word-aligned string data, which is allocated to the maximum size
Refer to the UCS Pascal Programming Reference Manual for details.

¢ The Pascal type charis implemented as a 9-bit integral value, left-justified within
a word. The Ada default for type character is implemented as a werd integral

(right-justified) value. Therefore, do not pass an Ada item of type charactertoa
Pascal formal parameter of type char.

Example
This example demonstrates 2 call from an Ada main program to a Pascal subprogram,
with the following actions by the main program and subprogram:

¢ The Ada main program initializes an integer scalar, a string, and a two-
dimensional integer array. Each element of the array is initialized with its
ordinal value in column-major order.

¢ The contents of-the Ada data items are displayed to verify initialization.

¢ The Ada main program calls the Pascal subprogram, passing the three data items
as actual arguments.

o The subprogram updates the contents of the dummy arguments and returns
control to the main program. The changes to the string and scalar integer
arguments are straightforward. The array is updated by adding the value of the

7830 7287-000

UCS Ada Calling UCS Pascal

" ordinal position of each element to the current contents of each element.

Therefore, when the contents of the array are again displayed in the Ada main
program, the value of each element should be double the original value.

The main program again displays the contents of the arguments to verify that the
Pascal subprogram updated them correctly.

Figure 94 shows the output from executing this program.

7830 7287-000

<
.

Ly

ey
:

AN :

UCS Ada Calling UCS Pascal

- This Ada main program calls a Pascal subprogram.
with TEXT_I0;
procedure CALLPAS is

I, J : INTEGER; <,

subtype STR_TYPE is STRING (1 .. 12);
C : STR_TYPE;

type ARR_TYPE is array (1 .. 4, 1 .. 3) of INTEGER;
A : ARR_TYPE;

.procedure PASSUB (I1 : in out INTEGER;
€l : in out STR_TYPE;
Al : in out ARR_TYPE);
pragma INTERFACE (UPAS, PASSUB);

package INT_I0 is new TEXT_10.INTEGER 10 (INTEGER);

begin
TEXT_IO.PUT_LINE (** In Ada main program **);

-- Intialize and print variables

I := 1233

TEXT_IOPUT. (* I = *);
INT_10.PUT (1);
TEXT_IO.NEW_LINE;

Cis*rAda* *
TEXT_IO.PUT (* C = *);
TEXT_10.PUT_LINE (C);

TEXT_I0.PUT_LINE (* A = *);
J s 1
for I1in 1 .. 4 Yoop
for 12 in1 .. 3 loop
A (11, 12) := J;
. INT_10.PUT (A (I1, 12)):
s J+ 13
end loop;
TEXT_IO.NEW_LINE;
end loop;

-= Call UPAS

7830 7287-000

UCS Ada Calling UCS Pascal

PASSUB (I, C, A);
-« Print variables on return from UPAS

TEXT_10.NEW_LINE;

TEXT_10.PUT_LINE (** Back in Ada main program **);

TEXT_10.PUT (* 1= *);
) INT_T0.PUT (1); .
TEXT_10.NEW_LINE;

TEXT_10.PUT (* C = *);
TEXT_10.PUT_LINE (C);

TEXT_10.PUT_LINE (*A=");

J =];

for 11 in 1 .. 4 loop
for 12 in 1 .. 3 Yoop

INT_I0.PUT (A (12, 12));

end loop;
TEXT_IO.NEW_LINE;

_end loop;

end CALLPAS;

Example 9-7. UCS Ada Main Program to Call UCS Pascal Subprogram

7830 7287-000

9-35

'UCS Ada Calling UCS Pascal

COMPILATION UNIT uada_interlanguage_call_demo ;

TYPE
real_array = ARRAY[1..4,1..3] OF INTEGER ;
char_array_type = PACKED ARRAY[1..12] OF CHAR ;

PROCEDURE ENTRY passub(VAR iparm : INTEGER;
VAR cparm : char_array_type ;
VAR aparm : real_array) ;
VAR
i,J : INTEGER ;

BEGIN
iparm := 456 ;
cparm = ‘* Pascal * ';
FOR i s= 1 70 4 DO
FORJ ¢=1T03D0
aparm(i,j] := aparm{i,j] + § + (i-1)*3 ;
END.

Example 9-8. UCS Pascal Subprogram Called from UCS Ada Main Program

9-36 7830 7287-000

UCS Ada Calling UCS Pascal

* In Ada main program *

I =

C=*Ada *

As
1 2 3
4 5 6
7 8 "9
10 11 12

* Back in Ada main program *

1= 456

C = * Pascal *

A=
2 4 6
8 10 12
14 16 18
20 22 24

Figure 9-4. Output of UCS Ada Program Calling UCS Pascal Subprogram

7830 7287-000

